Thorax 0.3.0 test
All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 46s

Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
This commit is contained in:
2024-06-03 09:29:54 -07:00
parent d0dd10d807
commit 14e4ccbf2d
40 changed files with 12 additions and 11 deletions

View File

@@ -1,10 +1,10 @@
{ {
"version": "0.2.1-m1", "version": "0.3.0-s1",
"region": "Thorax", "region": "Thorax",
"size": 640, "size": 960,
"epochs": 1000, "epochs": 1000,
"name": "med1", "name": "small1",
"yolo-version": "8.2.16 docker", "yolo-version": "8.2.16 docker",
"date": "2024-05-16", "date": "2024-05-29",
"export": "0.2.1-th" "export": "0.3.0-th"
} }

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,14 +1,14 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.2.1/thorax.yaml description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.3.0/thorax_g.yaml
author: Ultralytics author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license license: AGPL-3.0 https://ultralytics.com/license
date: '2024-05-28T16:18:09.394705' date: '2024-05-29T22:49:38.649823'
version: 8.1.20 version: 8.1.20
stride: 32 stride: 32
task: detect task: detect
batch: 1 batch: 1
imgsz: imgsz:
- 640 - 960
- 640 - 960
names: names:
0: Abdominal diaphragm 0: Abdominal diaphragm
1: Aorta 1: Aorta

File diff suppressed because one or more lines are too long

View File

@@ -28,7 +28,8 @@ export default {
console.time('pre-process') console.time('pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const input = tf.tidy(() => { const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight]).div(255.0).expandDims(0) var gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
}) })
console.timeEnd('pre-process') console.timeEnd('pre-process')