Split detect.vue (#122)

Closes: #112

New mixins for camera and detection (remote and local) and new css for detection page.

Reviewed-on: #122
This commit is contained in:
2024-03-06 14:36:27 -07:00
parent b00b5cf492
commit 1f25a75cec
4 changed files with 312 additions and 286 deletions

View File

@@ -0,0 +1,147 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue'
var model = null
export default {
methods: {
async loadModel(weights) {
model = await tf.loadGraphModel(weights).then(graphModel => {
return graphModel
})
},
async localDetect(imageData) {
console.time('pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3);
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
console.timeEnd('pre-process')
console.time('run prediction')
const res = model.predict(input)
console.timeEnd('run prediction')
console.time('post-process')
const detectAttempts = res.shape[2]
const outputSize = res.shape[1]
const rawRes = tf.transpose(res,[0,2,1]).dataSync()
let rawBoxes = []
let rawScores = []
for (var i = 0; i < detectAttempts; i++) {
var getBox = rawRes.slice((i * outputSize),(i * outputSize) + 4)
var boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
(getBox[1] + (getBox[3] / 2)) / modelHeight,
]
rawBoxes.push(boxCalc)
rawScores.push(rawRes.slice((i * outputSize) + 4,(i + 1) * outputSize))
}
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (var c = 0; c < outputSize - 4; c++) {
tScores = rawScores.map(x => x[c])
var validBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tf.tensor1d(tScores),10,0.5,.05)
validBoxes = validBoxes.dataSync()
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
var outputScores = tScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
const valid_detections_data = classes_data.length
var output = {
detections: []
}
for (var i =0; i < valid_detections_data; i++) {
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
"label": this.detectorLabels[classes_data[i]].name,
"confidence": scores_data[i] * 100
})
}
tf.dispose(res)
tf.dispose(tBoxes)
console.timeEnd('post-process')
return output
},
getRemoteLabels() {
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
var xhr = new XMLHttpRequest()
xhr.open("GET", modelURL)
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.timeout = 10000
xhr.ontimeout = this.remoteTimeout
xhr.onload = function () {
if (this.status !== 200) {
console.log(xhr.response)
const errorResponse = JSON.parse(xhr.response)
f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`)
return
}
var detectors = JSON.parse(xhr.response).detectors
var findLabel = detectors
.find( d => { return d.name == self.detectorName } )?.labels
.filter( l => { return l != "" } ).sort()
.map( l => { return {'name': l, 'detect': true} } )
self.detectorLabels = findLabel || []
}
xhr.onerror = function (e) {
f7.dialog.alert('ALVINN has encountered an unknown server error')
return
}
xhr.send()
},
remoteDetect() {
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect`
var xhr = new XMLHttpRequest()
xhr.open("POST", modelURL)
xhr.timeout = 10000
xhr.ontimeout = this.remoteTimeout
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.onload = function () {
self.detecting = false
if (this.status !== 200) {
console.log(xhr.response)
const errorResponse = JSON.parse(xhr.response)
f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`)
return;
}
self.resultData = JSON.parse(xhr.response)
self.uploadDirty = true
}
var doodsData = {
"detector_name": this.detectorName,
"detect": {
"*": 1
},
"data": this.imageView.src.split(',')[1]
}
xhr.send(JSON.stringify(doodsData))
},
remoteTimeout () {
this.detecting = false
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
}
}
}