diff --git a/src/js/detect-worker.js b/src/assets/detect-worker.js similarity index 69% rename from src/js/detect-worker.js rename to src/assets/detect-worker.js index e34ca51..828d1d4 100644 --- a/src/js/detect-worker.js +++ b/src/assets/detect-worker.js @@ -10,22 +10,22 @@ self.onconnect = (e) => { switch (e.data.call) { case 'loadModel': loadModel('.' + e.data.weights,e.data.preload).then(() => { - port.postMessage({success: true}) + port.postMessage({success: 'model'}) }).catch((err) => { port.postMessage({error: true, message: err.message}) }) break case 'localDetect': localDetect(e.data.image).then((dets) => { - port.postMessage({success: true, detections: dets}) + port.postMessage({success: 'detection', detections: dets}) }).catch((err) => { port.postMessage({error: true, message: err.message}) }) e.data.image.close() break case 'videoFrame': - videoFrame(e.data.image).then((franeDet) =>{ - port.postMessage({succes: true, coords: franeDet.cds, modelWidth: franeDet.mW, modelHeight: franeDet.mH}) + videoFrame(e.data.image).then((frameDet) =>{ + port.postMessage({succes: 'frame', coords: frameDet.cds, modelWidth: frameDet.mW, modelHeight: frameDet.mH}) }).catch((err) => { port.postMessage({error: true, message: err.message}) }) @@ -149,72 +149,6 @@ async function localDetect(imageData) { return output || { detections: [] } } -function getRemoteLabels() { - var self = this - var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors` - var xhr = new XMLHttpRequest() - xhr.open("GET", modelURL) - xhr.setRequestHeader('Content-Type', 'application/json') - xhr.timeout = 10000 - xhr.ontimeout = this.remoteTimeout - xhr.onload = function () { - if (this.status !== 200) { - console.log(xhr.response) - const errorResponse = JSON.parse(xhr.response) - f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`) - return - } - var detectors = JSON.parse(xhr.response).detectors - var findLabel = detectors - .find( d => { return d.name == self.detectorName } )?.labels - .filter( l => { return l != "" } ).sort() - .map( l => { return {'name': l, 'detect': true} } ) - self.detectorLabels = findLabel || [] - } - xhr.onerror = function (e) { - f7.dialog.alert('ALVINN has encountered an unknown server error') - return - } - - xhr.send() -} - -function remoteDetect() { - var self = this - var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect` - var xhr = new XMLHttpRequest() - xhr.open("POST", modelURL) - xhr.timeout = 10000 - xhr.ontimeout = this.remoteTimeout - xhr.setRequestHeader('Content-Type', 'application/json') - xhr.onload = function () { - self.detecting = false - if (this.status !== 200) { - console.log(xhr.response) - const errorResponse = JSON.parse(xhr.response) - f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`) - return; - } - self.resultData = JSON.parse(xhr.response) - self.uploadDirty = true - } - - var doodsData = { - "detector_name": this.detectorName, - "detect": { - "*": 1 - }, - "data": this.imageView.src.split(',')[1] - } - - xhr.send(JSON.stringify(doodsData)) -} - -function remoteTimeout () { - this.detecting = false - f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.') -} - async function videoFrame (vidData) { const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) console.time('frame-process') diff --git a/src/pages/camera-mixin.js b/src/pages/camera-mixin.js index d107415..93e8e01 100644 --- a/src/pages/camera-mixin.js +++ b/src/pages/camera-mixin.js @@ -42,7 +42,7 @@ export default { this.getImage(tempCVS.toDataURL()) }, async videoFrameDetect (vidData) { - const vidWorker = new SharedWorker('../js/detect-worker.js',{type: 'module'}) + const vidWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'}) vidWorker.port.onmessage = (eVid) => { self = this if (eVid.data.error) { diff --git a/src/pages/detect.vue b/src/pages/detect.vue index d901a54..ac81e18 100644 --- a/src/pages/detect.vue +++ b/src/pages/detect.vue @@ -177,7 +177,8 @@ videoDeviceAvailable: false, videoAvailable: false, cameraStream: null, - infoLinkPos: {} + infoLinkPos: {}, + workerScript: null } }, setup() { @@ -204,7 +205,7 @@ } this.modelLocation = `${modelRoot}/models/${this.detectorName}${this.otherSettings.mini ? '-mini' : ''}/model.json` this.miniLocation = `${modelRoot}/models/${this.detectorName}-mini/model.json` - fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/${this.detectorName}/classes.json`) + fetch(`${modelRoot}/models/${this.detectorName}/classes.json`) .then((mod) => { return mod.json() }) .then((classes) => { this.classesList = classes @@ -214,7 +215,7 @@ if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings) }, mounted () { - const mountWorker = new SharedWorker('../js/detect-worker.js',{type: 'module'}) + const mountWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'}) mountWorker.port.onmessage = (eMount) => { self = this if (eMount.data.error) { @@ -291,32 +292,43 @@ return `--chip-media-gradient: conic-gradient(from ${270 - (confFactor * 360 / 2)}deg, hsl(${confFactor * 120}deg, 100%, 50%) ${confFactor}turn, hsl(${confFactor * 120}deg, 50%, 66%) ${confFactor}turn)` }, async setData () { - const detectWorker = new SharedWorker('../js/detect-worker.js',{type: 'module'}) + const detectWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'}) detectWorker.port.onmessage = (eDetect) => { self = this if (eDetect.data.error) { self.detecting = false self.resultData = {} f7.dialog.alert(`ALVINN structure finding error: ${eDetect.data.message}`) - } else { + } else if (eDetect.data.success == 'detection') { self.detecting = false self.resultData = eDetect.data.detections if (self.resultData) { self.resultData.detections.map(d => {d.label = self.detectorLabels[d.label].name}) } self.uploadDirty = true + } else if (eDetect.data.success == 'model') { + this.reloadModel = false + loadSuccess(true) } } - if (this.reloadModel) { - await this.loadModel(this.modelLocation) - this.reloadModel = false - } + let loadSuccess = null + let loadFailure = null + let modelReloading = new Promise((res, rej) => { + loadSuccess = res + loadFailure = rej + if (this.reloadModel) { + detectWorker.port.postMessage({call: 'loadModel', weights: this.modelLocation}) + } else { + loadSuccess(true) + } + }) + if (this.serverSettings && this.serverSettings.use) { this.remoteDetect() } else { - createImageBitmap(this.imageView).then(imData => { - detectWorker.port.postMessage({call: 'localDetect', image: imData}, [imData]) + Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => { + detectWorker.port.postMessage({call: 'localDetect', image: res[1]}, [res[1]]) }) } }, diff --git a/src/pages/detection-mixin.js b/src/pages/detection-mixin.js index 2bffbc5..438742c 100644 --- a/src/pages/detection-mixin.js +++ b/src/pages/detection-mixin.js @@ -1,114 +1,7 @@ -import * as tf from '@tensorflow/tfjs' import { f7 } from 'framework7-vue' -let model = null - export default { methods: { - async loadModel(weights, preload) { - if (model && model.modelURL == weights) { - return model - } else if (model) { - tf.dispose(model) - } - model = await tf.loadGraphModel(weights) - const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) - /***************** - * If preloading then run model - * once on fake data to preload - * weights for a faster response - *****************/ - if (preload) { - const dummyT = tf.ones([1,modelWidth,modelHeight,3]) - model.predict(dummyT) - } - return model - }, - async localDetect(imageData) { - console.time('pre-process') - const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) - let gTense = null - const input = tf.tidy(() => { - gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0) - return tf.concat([gTense,gTense,gTense],3) - }) - tf.dispose(gTense) - console.timeEnd('pre-process') - - console.time('run prediction') - const res = model.predict(input) - const tRes = tf.transpose(res,[0,2,1]) - const rawRes = tRes.arraySync()[0] - console.timeEnd('run prediction') - - console.time('post-process') - const outputSize = res.shape[1] - let rawBoxes = [] - let rawScores = [] - - for (var i = 0; i < rawRes.length; i++) { - var getScores = rawRes[i].slice(4) - if (getScores.every( s => s < .05)) { continue } - var getBox = rawRes[i].slice(0,4) - var boxCalc = [ - (getBox[0] - (getBox[2] / 2)) / modelWidth, - (getBox[1] - (getBox[3] / 2)) / modelHeight, - (getBox[0] + (getBox[2] / 2)) / modelWidth, - (getBox[1] + (getBox[3] / 2)) / modelHeight, - ] - rawBoxes.push(boxCalc) - rawScores.push(getScores) - } - - if (rawBoxes.length > 0) { - const tBoxes = tf.tensor2d(rawBoxes) - let tScores = null - let resBoxes = null - let validBoxes = [] - let structureScores = null - let boxes_data = [] - let scores_data = [] - let classes_data = [] - for (var c = 0; c < outputSize - 4; c++) { - structureScores = rawScores.map(x => x[c]) - tScores = tf.tensor1d(structureScores) - resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05) - validBoxes = resBoxes.dataSync() - tf.dispose(resBoxes) - if (validBoxes) { - boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx))) - var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx)) - scores_data.push(...outputScores) - classes_data.push(...outputScores.fill(c)) - } - } - - validBoxes = [] - tf.dispose(tBoxes) - tf.dispose(tScores) - tf.dispose(tRes) - const valid_detections_data = classes_data.length - var output = { - detections: [] - } - for (var i =0; i < valid_detections_data; i++) { - var [dLeft, dTop, dRight, dBottom] = boxes_data[i] - output.detections.push({ - "top": dTop, - "left": dLeft, - "bottom": dBottom, - "right": dRight, - "label": this.detectorLabels[classes_data[i]].name, - "confidence": scores_data[i] * 100 - }) - } - } - tf.dispose(res) - tf.dispose(input) - console.timeEnd('post-process') - - return output || { detections: [] } - }, getRemoteLabels() { var self = this var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`