Update thorax model and improve model performance (#125)

Closes: #117

This bumps the thorax model from the yolo nano to the yolo sm (64 x 640 size) but greatly improves model performance by running a fake detection event on page load to get the model parameters in memory.

As a result of that change a new loading message was required so the f7 preloader was switched out for an f7 progress bar and more messaging was added during various stages.  The progress bar fixes the previous issue with the preloader.

Signed-off-by: Justin Georgi <justin.georgi@gmail.com>

Reviewed-on: #125
This commit is contained in:
2024-03-07 13:06:14 -07:00
parent 0e99679e00
commit 4af06f0fe5
19 changed files with 39 additions and 15 deletions

View File

@@ -3,7 +3,7 @@
.detect-grid { .detect-grid {
display: grid; display: grid;
grid-template-columns: 1fr; grid-template-columns: 1fr;
grid-template-rows: 1fr 56px auto min-content; grid-template-rows: 1fr minmax(calc(var(--f7-chip-height) + 33px), auto) auto min-content;
grid-template-areas: grid-template-areas:
"image-view" "image-view"
"result-view" "result-view"
@@ -51,6 +51,7 @@
--f7-chip-media-size: 32px; --f7-chip-media-size: 32px;
--f7-chip-font-weight: normal; --f7-chip-font-weight: normal;
overflow-y: auto; overflow-y: auto;
overflow-x: hidden;
max-height: 100%; max-height: 100%;
} }
@@ -58,6 +59,10 @@
padding-left: 8px; padding-left: 8px;
} }
.progress-hide {
display: hidden;
}
.selected-chip { .selected-chip {
font-weight: 500; font-weight: 500;
box-shadow: 4px 4px 1px var(--avn-theme-color); box-shadow: 4px 4px 1px var(--avn-theme-color);

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,14 +1,14 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
author: Ultralytics author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-05T17:01:14.129654' date: '2024-03-07T16:03:03.296997'
version: 8.1.20 version: 8.1.20
stride: 32 stride: 32
task: detect task: detect
batch: 1 batch: 1
imgsz: imgsz:
- 992 - 640
- 992 - 640
names: names:
0: Abdominal diaphragm 0: Abdominal diaphragm
1: Aorta 1: Aorta

File diff suppressed because one or more lines are too long

View File

@@ -13,7 +13,7 @@
<f7-button @click="captureVidFrame()" style="position: absolute; bottom: 32px; left: 50%; transform: translateX(-50%);" fill>Capture</f7-button> <f7-button @click="captureVidFrame()" style="position: absolute; bottom: 32px; left: 50%; transform: translateX(-50%);" fill>Capture</f7-button>
</div> </div>
</div> </div>
<div v-if="(resultData && resultData.detections) || detecting" class="chip-results" style="grid-area: result-view; flex: 0 0 auto; align-self: center;"> <div class="chip-results" style="grid-area: result-view; flex: 0 0 auto; align-self: center;">
<f7-chip v-for="result in showResults.filter( r => { return r.aboveThreshold && r.isSearched && !r.isDeleted })" <f7-chip v-for="result in showResults.filter( r => { return r.aboveThreshold && r.isSearched && !r.isDeleted })"
:class="(result.resultIndex == selectedChip) ? 'selected-chip' : ''" :class="(result.resultIndex == selectedChip) ? 'selected-chip' : ''"
:text="result.label" :text="result.label"
@@ -24,8 +24,8 @@
@delete="deleteChip(result.resultIndex)" @delete="deleteChip(result.resultIndex)"
:style="chipGradient(result.confidence)" :style="chipGradient(result.confidence)"
/> />
<span v-if="numResults == 0 && !detecting" style="height: var(--f7-chip-height); font-size: calc(var(--f7-chip-height) - 4px); font-weight: bolder; margin: 2px;">No results.</span> <div v-if="!numResults" style="height: var(--f7-chip-height); width: 100%; text-align: center; font-size: calc(var(--f7-chip-height) - 4px); font-weight: bolder; margin: 2px;">{{ message }}</div>
<f7-preloader v-if="detecting || modelLoading" size="32" style="color: var(--avn-theme-color);" /> <f7-progressbar v-if="(detecting || modelLoading)" style="width: 100%;" :infinite="true" />
</div> </div>
<div v-if="showDetectSettings" class="detect-inputs" style="grid-area: detect-settings;"> <div v-if="showDetectSettings" class="detect-inputs" style="grid-area: detect-settings;">
<f7-range class="level-slide-horz" :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range" style="flex: 1 1 100%"/> <f7-range class="level-slide-horz" :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range" style="flex: 1 1 100%"/>
@@ -41,7 +41,7 @@
<f7-button popover-open="#region-popover"> <f7-button popover-open="#region-popover">
<RegionIcon :region="activeRegion" /> <RegionIcon :region="activeRegion" />
</f7-button> </f7-button>
<f7-button popover-open="#capture-popover"> <f7-button :class="(!modelLoading) ? '' : 'disabled'" popover-open="#capture-popover">
<SvgIcon icon="camera_add"/> <SvgIcon icon="camera_add"/>
</f7-button> </f7-button>
<f7-button @click="() => showDetectSettings = !showDetectSettings" :class="(imageLoaded) ? '' : 'disabled'"> <f7-button @click="() => showDetectSettings = !showDetectSettings" :class="(imageLoaded) ? '' : 'disabled'">
@@ -144,7 +144,7 @@
uploadUid: null, uploadUid: null,
uploadDirty: false, uploadDirty: false,
modelLocation: '', modelLocation: '',
modelLoading: false, modelLoading: true,
videoDeviceAvailable: false, videoDeviceAvailable: false,
videoAvailable: false, videoAvailable: false,
cameraStream: null cameraStream: null
@@ -179,8 +179,11 @@
} }
var loadServerSettings = localStorage.getItem('serverSettings') var loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings) if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings)
},
mounted () {
if (this.serverSettings && this.serverSettings.use) { if (this.serverSettings && this.serverSettings.use) {
this.getRemoteLabels() this.getRemoteLabels()
this.modelLoading = false
} else { } else {
this.modelLoading = true this.modelLoading = true
this.detectorLabels = this.classesList.map( l => { return {'name': l, 'detect': true} } ) this.detectorLabels = this.classesList.map( l => { return {'name': l, 'detect': true} } )
@@ -189,11 +192,23 @@
}).catch((e) => { }).catch((e) => {
console.log(e.message) console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`) f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
}) })
} }
window.onresize = (e) => { this.selectChip('redraw') } window.onresize = (e) => { this.selectChip('redraw') }
}, },
computed: { computed: {
message () {
if (this.modelLoading) {
return "Preparing ALVINN..."
} else if (this.detecting) {
return "Finding structures..."
} else if (this.numResults == 0 && this.imageLoaded) {
return "No results."
} else {
return "ALVINN is ready."
}
},
showResults () { showResults () {
var filteredResults = this.resultData.detections var filteredResults = this.resultData.detections
if (!filteredResults) return [] if (!filteredResults) return []

View File

@@ -1,18 +1,22 @@
import * as tf from '@tensorflow/tfjs' import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue' import { f7 } from 'framework7-vue'
import { nextTick } from 'vue'
var model = null var model = null
export default { export default {
methods: { methods: {
async loadModel(weights) { async loadModel(weights) {
model = await tf.loadGraphModel(weights).then(graphModel => { await nextTick()
return graphModel model = await tf.loadGraphModel(weights)
}) const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
model.predict(dummyT) //Run model once to preload weights for better response time
return model
}, },
async localDetect(imageData) { async localDetect(imageData) {
console.time('pre-process') console.time('pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3); const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const input = tf.tidy(() => { const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight]).div(255.0).expandDims(0) return tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
}) })