Add safari-based logic for detection calls
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
This commit is contained in:
@@ -57,7 +57,7 @@ async function loadModel(weights, preload) {
|
||||
}
|
||||
|
||||
async function localDetect(imageData) {
|
||||
console.time('pre-process')
|
||||
console.time('sw: pre-process')
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
let gTense = null
|
||||
const input = tf.tidy(() => {
|
||||
@@ -65,15 +65,15 @@ async function localDetect(imageData) {
|
||||
return tf.concat([gTense,gTense,gTense],3)
|
||||
})
|
||||
tf.dispose(gTense)
|
||||
console.timeEnd('pre-process')
|
||||
console.timeEnd('sw: pre-process')
|
||||
|
||||
console.time('run prediction')
|
||||
console.time('sw: run prediction')
|
||||
const res = model.predict(input)
|
||||
const tRes = tf.transpose(res,[0,2,1])
|
||||
const rawRes = tRes.arraySync()[0]
|
||||
console.timeEnd('run prediction')
|
||||
console.timeEnd('sw: run prediction')
|
||||
|
||||
console.time('post-process')
|
||||
console.time('sw: post-process')
|
||||
const outputSize = res.shape[1]
|
||||
let rawBoxes = []
|
||||
let rawScores = []
|
||||
@@ -138,14 +138,14 @@ async function localDetect(imageData) {
|
||||
}
|
||||
tf.dispose(res)
|
||||
tf.dispose(input)
|
||||
console.timeEnd('post-process')
|
||||
console.timeEnd('sw: post-process')
|
||||
|
||||
return output || { detections: [] }
|
||||
}
|
||||
|
||||
async function videoFrame (vidData) {
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
console.time('frame-process')
|
||||
console.time('sw: frame-process')
|
||||
let rawCoords = []
|
||||
try {
|
||||
const input = tf.tidy(() => {
|
||||
@@ -171,6 +171,6 @@ async function videoFrame (vidData) {
|
||||
} catch (e) {
|
||||
console.log(e)
|
||||
}
|
||||
console.timeEnd('frame-process')
|
||||
console.timeEnd('sw: frame-process')
|
||||
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
|
||||
}
|
||||
@@ -41,7 +41,7 @@ export default {
|
||||
tempCtx.drawImage(vidViewer, 0, 0)
|
||||
this.getImage(tempCVS.toDataURL())
|
||||
},
|
||||
async videoFrameDetect (vidData) {
|
||||
async videoFrameDetectWorker (vidData) {
|
||||
const startDetection = () => {
|
||||
createImageBitmap(vidData).then(imVideoFrame => {
|
||||
this.vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
|
||||
|
||||
@@ -337,22 +337,39 @@
|
||||
|
||||
let loadSuccess = null
|
||||
let loadFailure = null
|
||||
let modelReloading = new Promise((res, rej) => {
|
||||
loadSuccess = res
|
||||
loadFailure = rej
|
||||
if (this.reloadModel) {
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
|
||||
} else {
|
||||
loadSuccess()
|
||||
}
|
||||
})
|
||||
let modelReloading = null
|
||||
if (this.isSafari && this.reloadModel) {
|
||||
await this.loadModel(this.modelLocation)
|
||||
this.reloadModel = false
|
||||
} else {
|
||||
modelReloading = new Promise((res, rej) => {
|
||||
loadSuccess = res
|
||||
loadFailure = rej
|
||||
if (this.reloadModel) {
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
|
||||
} else {
|
||||
loadSuccess()
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
if (this.serverSettings && this.serverSettings.use) {
|
||||
this.remoteDetect()
|
||||
} else {
|
||||
} else if (!this.isSafari) {
|
||||
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
|
||||
this.detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
|
||||
})
|
||||
} else {
|
||||
this.localDetect(this.imageView).then(dets => {
|
||||
this.detecting = false
|
||||
this.resultData = dets
|
||||
this.uploadDirty = true
|
||||
}).catch((e) => {
|
||||
console.log(e.message)
|
||||
this.detecting = false
|
||||
this.resultData = {}
|
||||
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
|
||||
})
|
||||
}
|
||||
},
|
||||
selectAll (ev) {
|
||||
@@ -368,7 +385,7 @@
|
||||
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
|
||||
return
|
||||
}
|
||||
if (mode == "camera") {
|
||||
if (mode == "camera" && !this.otherSettings.disableVideo) {
|
||||
this.videoAvailable = await this.openCamera(this.$refs.image_container)
|
||||
if (this.videoAvailable) {
|
||||
this.selectedChip = -1
|
||||
@@ -380,8 +397,10 @@
|
||||
var vidElement = this.$refs.vid_viewer
|
||||
vidElement.width = trackDetails.width
|
||||
vidElement.height = trackDetails.height
|
||||
if (!this.otherSettings.disableVideo) {
|
||||
if (this.isSafari) {
|
||||
this.videoFrameDetect(vidElement)
|
||||
} else {
|
||||
this.videoFrameDetectWorker(vidElement)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
@@ -25,7 +25,7 @@ export default {
|
||||
return model
|
||||
},
|
||||
async localDetect(imageData) {
|
||||
console.time('pre-process')
|
||||
console.time('mx: pre-process')
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
let gTense = null
|
||||
const input = tf.tidy(() => {
|
||||
@@ -33,15 +33,15 @@ export default {
|
||||
return tf.concat([gTense,gTense,gTense],3)
|
||||
})
|
||||
tf.dispose(gTense)
|
||||
console.timeEnd('pre-process')
|
||||
console.timeEnd('mx: pre-process')
|
||||
|
||||
console.time('run prediction')
|
||||
console.time('mx: run prediction')
|
||||
const res = model.predict(input)
|
||||
const tRes = tf.transpose(res,[0,2,1])
|
||||
const rawRes = tRes.arraySync()[0]
|
||||
console.timeEnd('run prediction')
|
||||
console.timeEnd('mx: run prediction')
|
||||
|
||||
console.time('post-process')
|
||||
console.time('mx: post-process')
|
||||
const outputSize = res.shape[1]
|
||||
let rawBoxes = []
|
||||
let rawScores = []
|
||||
@@ -105,7 +105,7 @@ export default {
|
||||
}
|
||||
tf.dispose(res)
|
||||
tf.dispose(input)
|
||||
console.timeEnd('post-process')
|
||||
console.timeEnd('mx: post-process')
|
||||
|
||||
return output || { detections: [] }
|
||||
},
|
||||
@@ -194,7 +194,7 @@ export default {
|
||||
imgHeight = imCanvas.height
|
||||
}
|
||||
while (this.videoAvailable) {
|
||||
console.time('frame-process')
|
||||
console.time('mx: frame-process')
|
||||
try {
|
||||
const input = tf.tidy(() => {
|
||||
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
|
||||
@@ -228,7 +228,7 @@ export default {
|
||||
} catch (e) {
|
||||
console.log(e)
|
||||
}
|
||||
console.timeEnd('frame-process')
|
||||
console.timeEnd('mx: frame-process')
|
||||
await tf.nextFrame();
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user