All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 33s
Shared workers seem to cause problems with iOS (and sharing wasn't really required anyway), so this PR changes the shared workers to non-shared workers. As a benefit, it preloads the full model and video models simultaneously which iproves performance when starting the video and running post video detection. Signed-off-by: Justin Georgi <justin.georgi@gmail.com> Reviewed-on: #191
176 lines
5.2 KiB
JavaScript
176 lines
5.2 KiB
JavaScript
import * as tf from '@tensorflow/tfjs'
|
|
|
|
let model = null
|
|
|
|
onmessage = function (e) {
|
|
switch (e.data.call) {
|
|
case 'loadModel':
|
|
loadModel('.' + e.data.weights,e.data.preload).then(() => {
|
|
postMessage({success: 'model'})
|
|
}).catch((err) => {
|
|
postMessage({error: true, message: err.message})
|
|
})
|
|
break
|
|
case 'localDetect':
|
|
localDetect(e.data.image).then((dets) => {
|
|
postMessage({success: 'detection', detections: dets})
|
|
}).catch((err) => {
|
|
//throw (err)
|
|
postMessage({error: true, message: err.message})
|
|
})
|
|
e.data.image.close()
|
|
break
|
|
case 'videoFrame':
|
|
videoFrame(e.data.image).then((frameDet) =>{
|
|
postMessage({succes: 'frame', coords: frameDet.cds, modelWidth: frameDet.mW, modelHeight: frameDet.mH})
|
|
}).catch((err) => {
|
|
postMessage({error: true, message: err.message})
|
|
})
|
|
e.data.image.close()
|
|
break
|
|
default:
|
|
console.log('Worker message incoming:')
|
|
console.log(e)
|
|
postMessage({result1: 'First result', result2: 'Second result'})
|
|
break
|
|
}
|
|
}
|
|
|
|
async function loadModel(weights, preload) {
|
|
if (model && model.modelURL == weights) {
|
|
return model
|
|
} else if (model) {
|
|
tf.dispose(model)
|
|
}
|
|
model = await tf.loadGraphModel(weights)
|
|
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
|
/*****************
|
|
* If preloading then run model
|
|
* once on fake data to preload
|
|
* weights for a faster response
|
|
*****************/
|
|
if (preload) {
|
|
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
|
|
model.predict(dummyT)
|
|
}
|
|
return model
|
|
}
|
|
|
|
async function localDetect(imageData) {
|
|
console.time('pre-process')
|
|
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
|
let gTense = null
|
|
const input = tf.tidy(() => {
|
|
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
|
|
return tf.concat([gTense,gTense,gTense],3)
|
|
})
|
|
tf.dispose(gTense)
|
|
console.timeEnd('pre-process')
|
|
|
|
console.time('run prediction')
|
|
const res = model.predict(input)
|
|
const tRes = tf.transpose(res,[0,2,1])
|
|
const rawRes = tRes.arraySync()[0]
|
|
console.timeEnd('run prediction')
|
|
|
|
console.time('post-process')
|
|
const outputSize = res.shape[1]
|
|
let rawBoxes = []
|
|
let rawScores = []
|
|
|
|
for (var i = 0; i < rawRes.length; i++) {
|
|
var getScores = rawRes[i].slice(4)
|
|
if (getScores.every( s => s < .05)) { continue }
|
|
var getBox = rawRes[i].slice(0,4)
|
|
var boxCalc = [
|
|
(getBox[0] - (getBox[2] / 2)) / modelWidth,
|
|
(getBox[1] - (getBox[3] / 2)) / modelHeight,
|
|
(getBox[0] + (getBox[2] / 2)) / modelWidth,
|
|
(getBox[1] + (getBox[3] / 2)) / modelHeight,
|
|
]
|
|
rawBoxes.push(boxCalc)
|
|
rawScores.push(getScores)
|
|
}
|
|
|
|
if (rawBoxes.length > 0) {
|
|
const tBoxes = tf.tensor2d(rawBoxes)
|
|
let tScores = null
|
|
let resBoxes = null
|
|
let validBoxes = []
|
|
let structureScores = null
|
|
let boxes_data = []
|
|
let scores_data = []
|
|
let classes_data = []
|
|
for (var c = 0; c < outputSize - 4; c++) {
|
|
structureScores = rawScores.map(x => x[c])
|
|
tScores = tf.tensor1d(structureScores)
|
|
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
|
|
validBoxes = resBoxes.dataSync()
|
|
tf.dispose(resBoxes)
|
|
if (validBoxes) {
|
|
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
|
|
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
|
|
scores_data.push(...outputScores)
|
|
classes_data.push(...outputScores.fill(c))
|
|
}
|
|
}
|
|
|
|
validBoxes = []
|
|
tf.dispose(tBoxes)
|
|
tf.dispose(tScores)
|
|
tf.dispose(tRes)
|
|
const valid_detections_data = classes_data.length
|
|
var output = {
|
|
detections: []
|
|
}
|
|
for (var i =0; i < valid_detections_data; i++) {
|
|
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
|
|
output.detections.push({
|
|
"top": dTop,
|
|
"left": dLeft,
|
|
"bottom": dBottom,
|
|
"right": dRight,
|
|
// "label": this.detectorLabels[classes_data[i]].name,
|
|
"label": classes_data[i],
|
|
"confidence": scores_data[i] * 100
|
|
})
|
|
}
|
|
}
|
|
tf.dispose(res)
|
|
tf.dispose(input)
|
|
console.timeEnd('post-process')
|
|
|
|
return output || { detections: [] }
|
|
}
|
|
|
|
async function videoFrame (vidData) {
|
|
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
|
console.time('frame-process')
|
|
let rawCoords = []
|
|
try {
|
|
const input = tf.tidy(() => {
|
|
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
|
|
})
|
|
const res = model.predict(input)
|
|
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
|
|
|
|
if (rawRes) {
|
|
for (var i = 0; i < rawRes.length; i++) {
|
|
let getScores = rawRes[i].slice(4)
|
|
if (getScores.some( s => s > .5)) {
|
|
let foundTarget = rawRes[i].slice(0,2)
|
|
foundTarget.push(Math.max(...getScores))
|
|
rawCoords.push(foundTarget)
|
|
}
|
|
}
|
|
|
|
}
|
|
tf.dispose(input)
|
|
tf.dispose(res)
|
|
tf.dispose(rawRes)
|
|
} catch (e) {
|
|
console.log(e)
|
|
}
|
|
console.timeEnd('frame-process')
|
|
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
|
|
} |