Files
WavesPrograms/index.html
2021-08-29 15:18:11 -07:00

512 lines
17 KiB
HTML

<!--
This work is licensed under CC BY-NC-ND 4.0
Link to license: http://creativecommons.org/licenses/by-nc-nd/4.0/
Attribute to Russell Georgi
-->
<html>
<head>
<title>
List of programs
</title>
<style>
table {
border-collapse: collapse;
width: 100%;
}
td {
border: 1px solid #dddddd;
text-align: left;
padding: 8px;
}
th {
border: 1px solid #dddddd;
text-align: center;
padding: 8px;
}
tr:nth-child(even) {
background-color: #dddddd;
}
</style>
</head>
<body>
<table>
<tr>
<td>
Number
</td>
<td>
Description
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 1: Harmonic Oscillation</t>
</th>
</tr>
<tr>
<td>
<a href='1-1.html'>1-1</a>
</td>
<td>
<t>The connection between harmonic motion and uniform circular motion.</t>
</td>
</tr>
<tr>
<td>
<a href='1-2.html'>1-2</a>
</td>
<td>
<t>Multiplication in the complex plane. Move the complex number
z around in the complex plane with the arrow keys.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 2: Forced Oscillation and Resonance</t>
</th>
</tr>
<tr>
<td>
<a href='2-1.html'>2-1</a>
</td>
<td>
<t>A damped forced harmonic oscillator with one degree of freedom.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 3: Normal Modes</t>
</th>
</tr>
<tr>
<td>
<a href='3-1.html'>3-1</a>
</td>
<td>
<t>Two coupled pendulums.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 4: Symmetries</t>
</th>
</tr>
<tr>
<td>
<a href='4-1.html'>4-1</a>
</td>
<td>
<t>Beats in two coupled pendulums.</t>
</td>
</tr>
<tr>
<td>
<a href='4-2.html'>4-2</a>
</td>
<td>
<t>Modes of the hacksaw oscillator.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 5: Waves</t>
</th>
</tr>
<tr>
<td>
<a href='5-1.html'>5-1</a>
</td>
<td>
<t>Standing waves in a system of coupled pendulums with fixed
ends.</t>
</td>
</tr>
<tr>
<td>
<a href='5-2.html'>5-2</a>
</td>
<td>
<t>Standing waves on a beaded string with fixed ends.</t>
</td>
</tr>
<tr>
<td>
<a href='5-3.html'>5-3</a>
</td>
<td>
<t>Standing waves on a beaded string with free ends.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 6: Continuum Limit and Fourier Series</t>
</th>
</tr>
<tr>
<td>
<a href='6-1.html'>6-1</a>
</td>
<td>
<t>Normal modes of the continuous string with fixed ends, with
k = n&#960/L for n = 1 to &#8734. The up and down arrow keys increase n.</t>
</td>
</tr>
<tr>
<td>
<a href='6-2.html'>6-2</a>
</td>
<td>
<t>Normal modes of the continuous string with one fixed end and
one free end, with k = n&#960/L &#8208 &#960/2L for n = 1 to &#8734. The up and down arrow keys increase
n.</t>
</td>
</tr>
<tr>
<td>
<a href='6-3.html'>6-3</a>
</td>
<td>
<t>The Fourier series for the function of (6.19)</t>
<br>
<img src= "fourierSeries.png">
</td>
</tr>
<tr>
<td>
<a href='6-4.html'>6-4</a>
</td>
<td>
<t>Plucking an ideal string.</t>
</td>
</tr>
<tr>
<td>
<a href='6-5.html'>6-5</a>
</td>
<td>
<t>Same program as 6-4, but with variable inputs.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 7: Longitudinal Oscillations and Sound</t>
</th>
</tr>
<tr>
<td>
<a href='7-1.html'>7-1</a>
</td>
<td>
<t>Longitudinal modes of a continuous spring with fixed ends.</t>
</td>
</tr>
<tr>
<td>
<a href='7-2.html'>7-2</a>
</td>
<td>
<t>Longitudinal modes of a continuous spring with one fixed end
and one free end.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 8: Traveling Waves</t>
</th>
</tr>
<tr>
<td>
<a href='8-1.html'>8-1</a>
</td>
<td>
<t>A traveling wave with a circle moving along the maximum of
the wave at the phase velocity.</t>
</td>
</tr>
<tr>
<td>
<a href='8-2.html'>8-2</a>
</td>
<td>
<t>A traveling wave built out of two standing waves.</t>
</td>
</tr>
<tr>
<td>
<a href='8-3.html'>8-3</a>
</td>
<td>
<t>A traveling wave with damping. It peters out as it travels.</t>
</td>
</tr>
<tr>
<td>
<a href='8-4.html'>8-4</a>
</td>
<td>
<t>A forced oscillation problem for a continuous string with damping
and one end fixed.</t>
</td>
</tr>
<tr>
<td>
<a href='8-5.html'>8-5</a>
</td>
<td>
<t>A forced oscillation problem for a beaded string with damping
and one end fixed.</t>
</td>
</tr>
<tr>
<td>
<a href='8-6.html'>8-6</a>
</td>
<td>
<t>High- and low-frequency cut-offs in a forced oscillation problem.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 9: The Boundary at Infinity</t>
</th>
</tr>
<tr>
<td>
<a href='9-1.html'>9-1</a>
</td>
<td>
<t>Looking at reflected waves. You can see the uneven motion of
a traveling wave with a small reflected amplitude.</t>
</td>
</tr>
<tr>
<td>
<a href='9-2.html'>9-2</a>
</td>
<td>
<t>Reflection and transmission from a mass on a string.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 10: Signals and Fourier Analysis</t>
</th>
</tr>
<tr>
<td>
<a href='10-1.html'>10-1</a>
</td>
<td>
<t>A triangular pulse propagating on a stretched string.</t>
</td>
</tr>
<tr>
<td>
<a href='10-2.html'>10-2</a>
</td>
<td>
<t>Group velocity (sum of two cosines).</t>
</td>
</tr>
<tr>
<td>
<a href='10-3.html'>10-3</a>
</td>
<td>
<t>Scattering of a pulse by a boundary between regions of different
k.</t>
</td>
</tr>
<tr>
<td>
<a href='10-4.html'>10-4</a>
</td>
<td>
<t>Scattering of a pulse by a mass on a string.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 11: Two and Three Dimensions</t>
</th>
</tr>
<tr>
<td>
<a href='11-1.html'>11-1</a>
</td>
<td>
<t>The modes of a two-dimensional beaded string.</t>
</td>
</tr>
<tr>
<td>
<a href='11-2.html'>11-2</a>
</td>
<td>
<t>Snell&#39s law with no reflection.</t>
</td>
</tr>
<tr>
<td>
<a href='11-3.html'>11-3</a>
</td>
<td>
<t>Water sloshing in a rectangular container.</t>
</td>
</tr>
<tr>
<td>
<a href='11-4.html'>11-4</a>
</td>
<td>
<t>Two immiscible liquids sloshing. Note the mismatch between
the upper and lower liquids in the middle. This is the result of the nonlinearity of the
constraint of incompressibility.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Chapter 12: Polarization</t>
</th>
</tr>
<tr>
<td>
<a href='12-1.html'>12-1</a>
</td>
<td>
<t>Polarization in the two-dimensional harmonic oscillator, or
in an electromagnetic wave. This shows the position of a string stretched in the z direction.
The transverse position is shown in the x-y plane along with the x and y components. Alternatively,
this can represent Ex and Ey in the electromagnetic wave propagating in the z
direction and the total E
field. In the upper left-hand corner is the complex two dimensional
vector, that describes the polarization.
You can change u1 between 1 and 0 with the left and right arrows. You can change |u2|
between 1 and 0 with the up and down arrows. F1 and F2 decrease and increase the phase of
u2 between &#960 and -&#960.</t>
</td>
</tr>
<tr>
<td>
<a href='12-2.html'>12-2</a>
</td>
<td>
<t>The wandering of the electric field in unpolarized light. The
electric field direction in the x-y plane is indicated by the trace. The color of the line changes
occasionally to make it visible.</t>
</td>
</tr>
<tr>
<th colspan = "2">
<t>Extra Special Bonus Programs</t>
</th>
</tr>
<tr>
<td>
<a href='rainbow.html'>Rainbow</a>
</td>
<td>
<t>
Demonstration of red and blue light refracting in a raindrop.
</t>
</td>
</tr>
<tr>
<td>
<a href='rainbow2.html'>Rainbow 2</a>
</td>
<td>
<t>
Visualization of the double rainbow and Alexander's dark band.
</t>
</td>
</tr>
<tr>
<td>
<a href='water20.html'>Water20</a>
</td>
<td>
<t>
Water waves in an infinite ocean.
</t>
</td>
</tr>
<tr>
<td>
<a href='lens.html'>Lens</a>
</td>
<td>
<t>
Light refracting through a lens.
</t>
</td>
</tr>
<tr>
<td>
<a href='xray0.html'>X-ray</a>
</td>
<td>
<t>
The relationship between color and phase in x-ray diffraction.
</t>
</td>
</tr>
<tr>
<td>
<a href='xray1.html'>X-ray 2</a>
</td>
<td>
<t>
A demonstration of x-rays diffracting through a crystal.
</t>
</td>
</tr>
<tr>
<td>
<a href='purcell.html'>Purcell</a>
</td>
<td>
<t>
The electric field generated by a particle that starts moving.
</t>
</td>
</tr>
<tr>
<td>
<a href='purcell2.html'>Purcell 2</a>
</td>
<td>
<t>
The electric field generated by a particle that stops moving.
</t>
</td>
</tr>
<tr>
<td>
<a href='chladni.html'>Chladni plates</a>
</td>
<td>
<t>
The vibrational modes of a chladni plate.
</t>
</td>
</tr>
<tr>
<td>
<a href='accelerometer.html'>Accelerometer spring</a>
</td>
<td>
<t>
<b>MOBILE ONLY</b>- lock your phone in portrait mode for best results. Displays a mass on a spring that you can control using your phone's accelerometer.
</t>
</td>
</tr>
</table>
<p xmlns:cc="http://creativecommons.org/ns#" >
This work is licensed under
<a href="http://creativecommons.org/licenses/by-nc-nd/4.0/?ref=chooser-v1" target="_blank" rel="license noopener noreferrer" style="display:inline-block;">CC BY-NC-ND 4.0<img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/cc.svg?ref=chooser-v1"><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/by.svg?ref=chooser-v1"><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/nc.svg?ref=chooser-v1"><img style="height:22px!important;margin-left:3px;vertical-align:text-bottom;" src="https://mirrors.creativecommons.org/presskit/icons/nd.svg?ref=chooser-v1"></a></p>
</body>
</html>