Fallback to non worker tfjs when on Safari (#193)
All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 38s

Safari's worker limitations mean that detection threads in the worker barely function. Until Apple quits being whiny jerks about PWAs, this workaround is required to bypass the message calls to the workers and use the old single threaded system when Safari is detected.

Reviewed-on: #193
This commit is contained in:
2024-08-15 22:43:19 +00:00
parent 7a19b9c43c
commit 401e5831c7
7 changed files with 230 additions and 24 deletions

View File

@@ -57,7 +57,7 @@ async function loadModel(weights, preload) {
}
async function localDetect(imageData) {
console.time('pre-process')
console.time('sw: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
@@ -65,15 +65,15 @@ async function localDetect(imageData) {
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('pre-process')
console.timeEnd('sw: pre-process')
console.time('run prediction')
console.time('sw: run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('run prediction')
console.timeEnd('sw: run prediction')
console.time('post-process')
console.time('sw: post-process')
const outputSize = res.shape[1]
let rawBoxes = []
let rawScores = []
@@ -138,14 +138,14 @@ async function localDetect(imageData) {
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('post-process')
console.timeEnd('sw: post-process')
return output || { detections: [] }
}
async function videoFrame (vidData) {
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
console.time('frame-process')
console.time('sw: frame-process')
let rawCoords = []
try {
const input = tf.tidy(() => {
@@ -171,6 +171,6 @@ async function videoFrame (vidData) {
} catch (e) {
console.log(e)
}
console.timeEnd('frame-process')
console.timeEnd('sw: frame-process')
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
}

View File

@@ -79,6 +79,7 @@
.then((mod) => { return mod.text() })
this.siteConf = YAML.parse(confText)
}
if (window.safari !== undefined) {store().safariDetected()}
const loadSiteSettings = localStorage.getItem('siteSettings')
if (loadSiteSettings) {
let loadedSettings = JSON.parse(loadSiteSettings)

View File

@@ -9,7 +9,8 @@ const state = reactive({
useExternal: 'optional',
siteDemo: false,
externalServerList: [],
infoUrl: false
infoUrl: false,
safariBrowser: false
})
const set = (config, confObj) => {
@@ -21,6 +22,10 @@ const agree = () => {
state.disclaimerAgreement = true
}
const safariDetected = () => {
state.safariBrowser = true
}
const getServerList = () => {
if (state.useExternal == 'required') {
return state.externalServerList[0]
@@ -50,8 +55,10 @@ export default () => ({
getVersion: computed(() => state.version),
getIconSet: computed(() => state.regionIconSet),
getInfoUrl: computed(() => state.infoUrl),
isSafari: computed(() => state.safariBrowser),
set,
agree,
safariDetected,
getServerList,
toggleFullscreen
})

View File

@@ -41,7 +41,7 @@ export default {
tempCtx.drawImage(vidViewer, 0, 0)
this.getImage(tempCVS.toDataURL())
},
async videoFrameDetect (vidData) {
async videoFrameDetectWorker (vidData) {
const startDetection = () => {
createImageBitmap(vidData).then(imVideoFrame => {
this.vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])

View File

@@ -241,8 +241,18 @@
this.modelLoading = false
} else {
this.modelLoading = true
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
if (this.isSafari) {
this.loadModel(this.modelLocation, true).then(() => {
this.modelLoading = false
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
})
} else {
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
}
}
window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') }
},
@@ -327,22 +337,39 @@
let loadSuccess = null
let loadFailure = null
let modelReloading = new Promise((res, rej) => {
loadSuccess = res
loadFailure = rej
if (this.reloadModel) {
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
} else {
loadSuccess()
}
})
let modelReloading = null
if (this.isSafari && this.reloadModel) {
await this.loadModel(this.modelLocation)
this.reloadModel = false
} else {
modelReloading = new Promise((res, rej) => {
loadSuccess = res
loadFailure = rej
if (this.reloadModel) {
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
} else {
loadSuccess()
}
})
}
if (this.serverSettings && this.serverSettings.use) {
this.remoteDetect()
} else {
} else if (!this.isSafari) {
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
this.detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
})
} else {
this.localDetect(this.imageView).then(dets => {
this.detecting = false
this.resultData = dets
this.uploadDirty = true
}).catch((e) => {
console.log(e.message)
this.detecting = false
this.resultData = {}
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
})
}
},
selectAll (ev) {
@@ -358,7 +385,7 @@
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
return
}
if (mode == "camera") {
if (mode == "camera" && !this.otherSettings.disableVideo) {
this.videoAvailable = await this.openCamera(this.$refs.image_container)
if (this.videoAvailable) {
this.selectedChip = -1
@@ -370,8 +397,10 @@
var vidElement = this.$refs.vid_viewer
vidElement.width = trackDetails.width
vidElement.height = trackDetails.height
if (!this.otherSettings.disableVideo) {
if (this.isSafari) {
this.videoFrameDetect(vidElement)
} else {
this.videoFrameDetectWorker(vidElement)
}
return
}

View File

@@ -1,7 +1,114 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue'
let model = null
export default {
methods: {
async loadModel(weights, preload) {
if (model && model.modelURL == weights) {
return model
} else if (model) {
tf.dispose(model)
}
model = await tf.loadGraphModel(weights)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
/*****************
* If preloading then run model
* once on fake data to preload
* weights for a faster response
*****************/
if (preload) {
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
model.predict(dummyT)
}
return model
},
async localDetect(imageData) {
console.time('mx: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('mx: pre-process')
console.time('mx: run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('mx: run prediction')
console.time('mx: post-process')
const outputSize = res.shape[1]
let rawBoxes = []
let rawScores = []
for (var i = 0; i < rawRes.length; i++) {
var getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
var getBox = rawRes[i].slice(0,4)
var boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
(getBox[1] + (getBox[3] / 2)) / modelHeight,
]
rawBoxes.push(boxCalc)
rawScores.push(getScores)
}
if (rawBoxes.length > 0) {
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let resBoxes = null
let validBoxes = []
let structureScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (var c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = resBoxes.dataSync()
tf.dispose(resBoxes)
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
validBoxes = []
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
const valid_detections_data = classes_data.length
var output = {
detections: []
}
for (var i =0; i < valid_detections_data; i++) {
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
"label": this.detectorLabels[classes_data[i]].name,
"confidence": scores_data[i] * 100
})
}
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('mx: post-process')
return output || { detections: [] }
},
getRemoteLabels() {
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
@@ -65,5 +172,65 @@ export default {
this.detecting = false
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
},
async videoFrameDetect (vidData) {
await this.loadModel(this.miniLocation)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
const target = this.$refs.target_image
await tf.nextFrame();
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
var imgWidth
var imgHeight
const imgAspect = vidData.width / vidData.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
while (this.videoAvailable) {
console.time('mx: frame-process')
try {
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
const res = model.predict(input)
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
let rawCoords = []
if (rawRes) {
for (var i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
foundTarget.push(Math.max(...getScores))
rawCoords.push(foundTarget)
}
}
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (var coord of rawCoords) {
console.log(`x: ${coord[0]}, y: ${coord[1]}`)
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / modelWidth) * imgWidth -5
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / modelHeight) * imgHeight -5
imageCtx.globalAlpha = coord[2]
imageCtx.drawImage(target, pointX, pointY, 20, 20)
}
}
tf.dispose(input)
tf.dispose(res)
tf.dispose(rawRes)
} catch (e) {
console.log(e)
}
console.timeEnd('mx: frame-process')
await tf.nextFrame();
}
}
}
}

View File

@@ -8,6 +8,7 @@
<f7-block-title medium>Details</f7-block-title>
<f7-list>
<f7-list-item title="Version" :after="alvinnVersion"></f7-list-item>
<f7-list-item v-if="isSafari" title="Safari" after="Workers disabled"></f7-list-item>
</f7-list>
<f7-block-title medium>Models</f7-block-title>
<f7-list style="width: 100%;">
@@ -52,6 +53,7 @@
miniHeadneckDetails: {},
alvinnVersion: store().getVersion,
isCordova: !!window.cordova,
isSafari: store().isSafari,
otherSettings: {}
}
},