Fallback to non worker tfjs when on Safari (#193)
All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 38s
All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 38s
Safari's worker limitations mean that detection threads in the worker barely function. Until Apple quits being whiny jerks about PWAs, this workaround is required to bypass the message calls to the workers and use the old single threaded system when Safari is detected. Reviewed-on: #193
This commit is contained in:
@@ -57,7 +57,7 @@ async function loadModel(weights, preload) {
|
||||
}
|
||||
|
||||
async function localDetect(imageData) {
|
||||
console.time('pre-process')
|
||||
console.time('sw: pre-process')
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
let gTense = null
|
||||
const input = tf.tidy(() => {
|
||||
@@ -65,15 +65,15 @@ async function localDetect(imageData) {
|
||||
return tf.concat([gTense,gTense,gTense],3)
|
||||
})
|
||||
tf.dispose(gTense)
|
||||
console.timeEnd('pre-process')
|
||||
console.timeEnd('sw: pre-process')
|
||||
|
||||
console.time('run prediction')
|
||||
console.time('sw: run prediction')
|
||||
const res = model.predict(input)
|
||||
const tRes = tf.transpose(res,[0,2,1])
|
||||
const rawRes = tRes.arraySync()[0]
|
||||
console.timeEnd('run prediction')
|
||||
console.timeEnd('sw: run prediction')
|
||||
|
||||
console.time('post-process')
|
||||
console.time('sw: post-process')
|
||||
const outputSize = res.shape[1]
|
||||
let rawBoxes = []
|
||||
let rawScores = []
|
||||
@@ -138,14 +138,14 @@ async function localDetect(imageData) {
|
||||
}
|
||||
tf.dispose(res)
|
||||
tf.dispose(input)
|
||||
console.timeEnd('post-process')
|
||||
console.timeEnd('sw: post-process')
|
||||
|
||||
return output || { detections: [] }
|
||||
}
|
||||
|
||||
async function videoFrame (vidData) {
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
console.time('frame-process')
|
||||
console.time('sw: frame-process')
|
||||
let rawCoords = []
|
||||
try {
|
||||
const input = tf.tidy(() => {
|
||||
@@ -171,6 +171,6 @@ async function videoFrame (vidData) {
|
||||
} catch (e) {
|
||||
console.log(e)
|
||||
}
|
||||
console.timeEnd('frame-process')
|
||||
console.timeEnd('sw: frame-process')
|
||||
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
|
||||
}
|
||||
@@ -79,6 +79,7 @@
|
||||
.then((mod) => { return mod.text() })
|
||||
this.siteConf = YAML.parse(confText)
|
||||
}
|
||||
if (window.safari !== undefined) {store().safariDetected()}
|
||||
const loadSiteSettings = localStorage.getItem('siteSettings')
|
||||
if (loadSiteSettings) {
|
||||
let loadedSettings = JSON.parse(loadSiteSettings)
|
||||
|
||||
@@ -9,7 +9,8 @@ const state = reactive({
|
||||
useExternal: 'optional',
|
||||
siteDemo: false,
|
||||
externalServerList: [],
|
||||
infoUrl: false
|
||||
infoUrl: false,
|
||||
safariBrowser: false
|
||||
})
|
||||
|
||||
const set = (config, confObj) => {
|
||||
@@ -21,6 +22,10 @@ const agree = () => {
|
||||
state.disclaimerAgreement = true
|
||||
}
|
||||
|
||||
const safariDetected = () => {
|
||||
state.safariBrowser = true
|
||||
}
|
||||
|
||||
const getServerList = () => {
|
||||
if (state.useExternal == 'required') {
|
||||
return state.externalServerList[0]
|
||||
@@ -50,8 +55,10 @@ export default () => ({
|
||||
getVersion: computed(() => state.version),
|
||||
getIconSet: computed(() => state.regionIconSet),
|
||||
getInfoUrl: computed(() => state.infoUrl),
|
||||
isSafari: computed(() => state.safariBrowser),
|
||||
set,
|
||||
agree,
|
||||
safariDetected,
|
||||
getServerList,
|
||||
toggleFullscreen
|
||||
})
|
||||
|
||||
@@ -41,7 +41,7 @@ export default {
|
||||
tempCtx.drawImage(vidViewer, 0, 0)
|
||||
this.getImage(tempCVS.toDataURL())
|
||||
},
|
||||
async videoFrameDetect (vidData) {
|
||||
async videoFrameDetectWorker (vidData) {
|
||||
const startDetection = () => {
|
||||
createImageBitmap(vidData).then(imVideoFrame => {
|
||||
this.vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
|
||||
|
||||
@@ -241,8 +241,18 @@
|
||||
this.modelLoading = false
|
||||
} else {
|
||||
this.modelLoading = true
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
|
||||
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
|
||||
if (this.isSafari) {
|
||||
this.loadModel(this.modelLocation, true).then(() => {
|
||||
this.modelLoading = false
|
||||
}).catch((e) => {
|
||||
console.log(e.message)
|
||||
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
|
||||
this.modelLoading = false
|
||||
})
|
||||
} else {
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
|
||||
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
|
||||
}
|
||||
}
|
||||
window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') }
|
||||
},
|
||||
@@ -327,22 +337,39 @@
|
||||
|
||||
let loadSuccess = null
|
||||
let loadFailure = null
|
||||
let modelReloading = new Promise((res, rej) => {
|
||||
loadSuccess = res
|
||||
loadFailure = rej
|
||||
if (this.reloadModel) {
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
|
||||
} else {
|
||||
loadSuccess()
|
||||
}
|
||||
})
|
||||
let modelReloading = null
|
||||
if (this.isSafari && this.reloadModel) {
|
||||
await this.loadModel(this.modelLocation)
|
||||
this.reloadModel = false
|
||||
} else {
|
||||
modelReloading = new Promise((res, rej) => {
|
||||
loadSuccess = res
|
||||
loadFailure = rej
|
||||
if (this.reloadModel) {
|
||||
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
|
||||
} else {
|
||||
loadSuccess()
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
if (this.serverSettings && this.serverSettings.use) {
|
||||
this.remoteDetect()
|
||||
} else {
|
||||
} else if (!this.isSafari) {
|
||||
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
|
||||
this.detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
|
||||
})
|
||||
} else {
|
||||
this.localDetect(this.imageView).then(dets => {
|
||||
this.detecting = false
|
||||
this.resultData = dets
|
||||
this.uploadDirty = true
|
||||
}).catch((e) => {
|
||||
console.log(e.message)
|
||||
this.detecting = false
|
||||
this.resultData = {}
|
||||
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
|
||||
})
|
||||
}
|
||||
},
|
||||
selectAll (ev) {
|
||||
@@ -358,7 +385,7 @@
|
||||
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
|
||||
return
|
||||
}
|
||||
if (mode == "camera") {
|
||||
if (mode == "camera" && !this.otherSettings.disableVideo) {
|
||||
this.videoAvailable = await this.openCamera(this.$refs.image_container)
|
||||
if (this.videoAvailable) {
|
||||
this.selectedChip = -1
|
||||
@@ -370,8 +397,10 @@
|
||||
var vidElement = this.$refs.vid_viewer
|
||||
vidElement.width = trackDetails.width
|
||||
vidElement.height = trackDetails.height
|
||||
if (!this.otherSettings.disableVideo) {
|
||||
if (this.isSafari) {
|
||||
this.videoFrameDetect(vidElement)
|
||||
} else {
|
||||
this.videoFrameDetectWorker(vidElement)
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
@@ -1,7 +1,114 @@
|
||||
import * as tf from '@tensorflow/tfjs'
|
||||
import { f7 } from 'framework7-vue'
|
||||
|
||||
let model = null
|
||||
|
||||
export default {
|
||||
methods: {
|
||||
async loadModel(weights, preload) {
|
||||
if (model && model.modelURL == weights) {
|
||||
return model
|
||||
} else if (model) {
|
||||
tf.dispose(model)
|
||||
}
|
||||
model = await tf.loadGraphModel(weights)
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
/*****************
|
||||
* If preloading then run model
|
||||
* once on fake data to preload
|
||||
* weights for a faster response
|
||||
*****************/
|
||||
if (preload) {
|
||||
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
|
||||
model.predict(dummyT)
|
||||
}
|
||||
return model
|
||||
},
|
||||
async localDetect(imageData) {
|
||||
console.time('mx: pre-process')
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
let gTense = null
|
||||
const input = tf.tidy(() => {
|
||||
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
|
||||
return tf.concat([gTense,gTense,gTense],3)
|
||||
})
|
||||
tf.dispose(gTense)
|
||||
console.timeEnd('mx: pre-process')
|
||||
|
||||
console.time('mx: run prediction')
|
||||
const res = model.predict(input)
|
||||
const tRes = tf.transpose(res,[0,2,1])
|
||||
const rawRes = tRes.arraySync()[0]
|
||||
console.timeEnd('mx: run prediction')
|
||||
|
||||
console.time('mx: post-process')
|
||||
const outputSize = res.shape[1]
|
||||
let rawBoxes = []
|
||||
let rawScores = []
|
||||
|
||||
for (var i = 0; i < rawRes.length; i++) {
|
||||
var getScores = rawRes[i].slice(4)
|
||||
if (getScores.every( s => s < .05)) { continue }
|
||||
var getBox = rawRes[i].slice(0,4)
|
||||
var boxCalc = [
|
||||
(getBox[0] - (getBox[2] / 2)) / modelWidth,
|
||||
(getBox[1] - (getBox[3] / 2)) / modelHeight,
|
||||
(getBox[0] + (getBox[2] / 2)) / modelWidth,
|
||||
(getBox[1] + (getBox[3] / 2)) / modelHeight,
|
||||
]
|
||||
rawBoxes.push(boxCalc)
|
||||
rawScores.push(getScores)
|
||||
}
|
||||
|
||||
if (rawBoxes.length > 0) {
|
||||
const tBoxes = tf.tensor2d(rawBoxes)
|
||||
let tScores = null
|
||||
let resBoxes = null
|
||||
let validBoxes = []
|
||||
let structureScores = null
|
||||
let boxes_data = []
|
||||
let scores_data = []
|
||||
let classes_data = []
|
||||
for (var c = 0; c < outputSize - 4; c++) {
|
||||
structureScores = rawScores.map(x => x[c])
|
||||
tScores = tf.tensor1d(structureScores)
|
||||
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
|
||||
validBoxes = resBoxes.dataSync()
|
||||
tf.dispose(resBoxes)
|
||||
if (validBoxes) {
|
||||
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
|
||||
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
|
||||
scores_data.push(...outputScores)
|
||||
classes_data.push(...outputScores.fill(c))
|
||||
}
|
||||
}
|
||||
|
||||
validBoxes = []
|
||||
tf.dispose(tBoxes)
|
||||
tf.dispose(tScores)
|
||||
tf.dispose(tRes)
|
||||
const valid_detections_data = classes_data.length
|
||||
var output = {
|
||||
detections: []
|
||||
}
|
||||
for (var i =0; i < valid_detections_data; i++) {
|
||||
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
|
||||
output.detections.push({
|
||||
"top": dTop,
|
||||
"left": dLeft,
|
||||
"bottom": dBottom,
|
||||
"right": dRight,
|
||||
"label": this.detectorLabels[classes_data[i]].name,
|
||||
"confidence": scores_data[i] * 100
|
||||
})
|
||||
}
|
||||
}
|
||||
tf.dispose(res)
|
||||
tf.dispose(input)
|
||||
console.timeEnd('mx: post-process')
|
||||
|
||||
return output || { detections: [] }
|
||||
},
|
||||
getRemoteLabels() {
|
||||
var self = this
|
||||
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
|
||||
@@ -65,5 +172,65 @@ export default {
|
||||
this.detecting = false
|
||||
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
|
||||
},
|
||||
async videoFrameDetect (vidData) {
|
||||
await this.loadModel(this.miniLocation)
|
||||
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
|
||||
const imCanvas = this.$refs.image_cvs
|
||||
const imageCtx = imCanvas.getContext("2d")
|
||||
const target = this.$refs.target_image
|
||||
await tf.nextFrame();
|
||||
imCanvas.width = imCanvas.clientWidth
|
||||
imCanvas.height = imCanvas.clientHeight
|
||||
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
|
||||
var imgWidth
|
||||
var imgHeight
|
||||
const imgAspect = vidData.width / vidData.height
|
||||
const rendAspect = imCanvas.width / imCanvas.height
|
||||
if (imgAspect >= rendAspect) {
|
||||
imgWidth = imCanvas.width
|
||||
imgHeight = imCanvas.width / imgAspect
|
||||
} else {
|
||||
imgWidth = imCanvas.height * imgAspect
|
||||
imgHeight = imCanvas.height
|
||||
}
|
||||
while (this.videoAvailable) {
|
||||
console.time('mx: frame-process')
|
||||
try {
|
||||
const input = tf.tidy(() => {
|
||||
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
|
||||
})
|
||||
const res = model.predict(input)
|
||||
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
|
||||
|
||||
let rawCoords = []
|
||||
if (rawRes) {
|
||||
for (var i = 0; i < rawRes.length; i++) {
|
||||
let getScores = rawRes[i].slice(4)
|
||||
if (getScores.some( s => s > .5)) {
|
||||
let foundTarget = rawRes[i].slice(0,2)
|
||||
foundTarget.push(Math.max(...getScores))
|
||||
rawCoords.push(foundTarget)
|
||||
}
|
||||
}
|
||||
|
||||
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
|
||||
for (var coord of rawCoords) {
|
||||
console.log(`x: ${coord[0]}, y: ${coord[1]}`)
|
||||
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / modelWidth) * imgWidth -5
|
||||
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / modelHeight) * imgHeight -5
|
||||
imageCtx.globalAlpha = coord[2]
|
||||
imageCtx.drawImage(target, pointX, pointY, 20, 20)
|
||||
}
|
||||
}
|
||||
tf.dispose(input)
|
||||
tf.dispose(res)
|
||||
tf.dispose(rawRes)
|
||||
} catch (e) {
|
||||
console.log(e)
|
||||
}
|
||||
console.timeEnd('mx: frame-process')
|
||||
await tf.nextFrame();
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -8,6 +8,7 @@
|
||||
<f7-block-title medium>Details</f7-block-title>
|
||||
<f7-list>
|
||||
<f7-list-item title="Version" :after="alvinnVersion"></f7-list-item>
|
||||
<f7-list-item v-if="isSafari" title="Safari" after="Workers disabled"></f7-list-item>
|
||||
</f7-list>
|
||||
<f7-block-title medium>Models</f7-block-title>
|
||||
<f7-list style="width: 100%;">
|
||||
@@ -52,6 +53,7 @@
|
||||
miniHeadneckDetails: {},
|
||||
alvinnVersion: store().getVersion,
|
||||
isCordova: !!window.cordova,
|
||||
isSafari: store().isSafari,
|
||||
otherSettings: {}
|
||||
}
|
||||
},
|
||||
|
||||
Reference in New Issue
Block a user