Fallback to non worker tfjs when on Safari (#193)
All checks were successful
Build Dev PWA / Build-PWA (push) Successful in 38s

Safari's worker limitations mean that detection threads in the worker barely function. Until Apple quits being whiny jerks about PWAs, this workaround is required to bypass the message calls to the workers and use the old single threaded system when Safari is detected.

Reviewed-on: #193
This commit is contained in:
2024-08-15 22:43:19 +00:00
parent 7a19b9c43c
commit 401e5831c7
7 changed files with 230 additions and 24 deletions

View File

@@ -57,7 +57,7 @@ async function loadModel(weights, preload) {
} }
async function localDetect(imageData) { async function localDetect(imageData) {
console.time('pre-process') console.time('sw: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null let gTense = null
const input = tf.tidy(() => { const input = tf.tidy(() => {
@@ -65,15 +65,15 @@ async function localDetect(imageData) {
return tf.concat([gTense,gTense,gTense],3) return tf.concat([gTense,gTense,gTense],3)
}) })
tf.dispose(gTense) tf.dispose(gTense)
console.timeEnd('pre-process') console.timeEnd('sw: pre-process')
console.time('run prediction') console.time('sw: run prediction')
const res = model.predict(input) const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1]) const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0] const rawRes = tRes.arraySync()[0]
console.timeEnd('run prediction') console.timeEnd('sw: run prediction')
console.time('post-process') console.time('sw: post-process')
const outputSize = res.shape[1] const outputSize = res.shape[1]
let rawBoxes = [] let rawBoxes = []
let rawScores = [] let rawScores = []
@@ -138,14 +138,14 @@ async function localDetect(imageData) {
} }
tf.dispose(res) tf.dispose(res)
tf.dispose(input) tf.dispose(input)
console.timeEnd('post-process') console.timeEnd('sw: post-process')
return output || { detections: [] } return output || { detections: [] }
} }
async function videoFrame (vidData) { async function videoFrame (vidData) {
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3) const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
console.time('frame-process') console.time('sw: frame-process')
let rawCoords = [] let rawCoords = []
try { try {
const input = tf.tidy(() => { const input = tf.tidy(() => {
@@ -171,6 +171,6 @@ async function videoFrame (vidData) {
} catch (e) { } catch (e) {
console.log(e) console.log(e)
} }
console.timeEnd('frame-process') console.timeEnd('sw: frame-process')
return {cds: rawCoords, mW: modelWidth, mH: modelHeight} return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
} }

View File

@@ -79,6 +79,7 @@
.then((mod) => { return mod.text() }) .then((mod) => { return mod.text() })
this.siteConf = YAML.parse(confText) this.siteConf = YAML.parse(confText)
} }
if (window.safari !== undefined) {store().safariDetected()}
const loadSiteSettings = localStorage.getItem('siteSettings') const loadSiteSettings = localStorage.getItem('siteSettings')
if (loadSiteSettings) { if (loadSiteSettings) {
let loadedSettings = JSON.parse(loadSiteSettings) let loadedSettings = JSON.parse(loadSiteSettings)

View File

@@ -9,7 +9,8 @@ const state = reactive({
useExternal: 'optional', useExternal: 'optional',
siteDemo: false, siteDemo: false,
externalServerList: [], externalServerList: [],
infoUrl: false infoUrl: false,
safariBrowser: false
}) })
const set = (config, confObj) => { const set = (config, confObj) => {
@@ -21,6 +22,10 @@ const agree = () => {
state.disclaimerAgreement = true state.disclaimerAgreement = true
} }
const safariDetected = () => {
state.safariBrowser = true
}
const getServerList = () => { const getServerList = () => {
if (state.useExternal == 'required') { if (state.useExternal == 'required') {
return state.externalServerList[0] return state.externalServerList[0]
@@ -50,8 +55,10 @@ export default () => ({
getVersion: computed(() => state.version), getVersion: computed(() => state.version),
getIconSet: computed(() => state.regionIconSet), getIconSet: computed(() => state.regionIconSet),
getInfoUrl: computed(() => state.infoUrl), getInfoUrl: computed(() => state.infoUrl),
isSafari: computed(() => state.safariBrowser),
set, set,
agree, agree,
safariDetected,
getServerList, getServerList,
toggleFullscreen toggleFullscreen
}) })

View File

@@ -41,7 +41,7 @@ export default {
tempCtx.drawImage(vidViewer, 0, 0) tempCtx.drawImage(vidViewer, 0, 0)
this.getImage(tempCVS.toDataURL()) this.getImage(tempCVS.toDataURL())
}, },
async videoFrameDetect (vidData) { async videoFrameDetectWorker (vidData) {
const startDetection = () => { const startDetection = () => {
createImageBitmap(vidData).then(imVideoFrame => { createImageBitmap(vidData).then(imVideoFrame => {
this.vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame]) this.vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])

View File

@@ -241,8 +241,18 @@
this.modelLoading = false this.modelLoading = false
} else { } else {
this.modelLoading = true this.modelLoading = true
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true}) if (this.isSafari) {
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true}) this.loadModel(this.modelLocation, true).then(() => {
this.modelLoading = false
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
})
} else {
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
this.vidWorker.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
}
} }
window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') } window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') }
}, },
@@ -327,22 +337,39 @@
let loadSuccess = null let loadSuccess = null
let loadFailure = null let loadFailure = null
let modelReloading = new Promise((res, rej) => { let modelReloading = null
loadSuccess = res if (this.isSafari && this.reloadModel) {
loadFailure = rej await this.loadModel(this.modelLocation)
if (this.reloadModel) { this.reloadModel = false
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation}) } else {
} else { modelReloading = new Promise((res, rej) => {
loadSuccess() loadSuccess = res
} loadFailure = rej
}) if (this.reloadModel) {
this.detectWorker.postMessage({call: 'loadModel', weights: this.modelLocation})
} else {
loadSuccess()
}
})
}
if (this.serverSettings && this.serverSettings.use) { if (this.serverSettings && this.serverSettings.use) {
this.remoteDetect() this.remoteDetect()
} else { } else if (!this.isSafari) {
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => { Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
this.detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]]) this.detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
}) })
} else {
this.localDetect(this.imageView).then(dets => {
this.detecting = false
this.resultData = dets
this.uploadDirty = true
}).catch((e) => {
console.log(e.message)
this.detecting = false
this.resultData = {}
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
})
} }
}, },
selectAll (ev) { selectAll (ev) {
@@ -358,7 +385,7 @@
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true }); navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
return return
} }
if (mode == "camera") { if (mode == "camera" && !this.otherSettings.disableVideo) {
this.videoAvailable = await this.openCamera(this.$refs.image_container) this.videoAvailable = await this.openCamera(this.$refs.image_container)
if (this.videoAvailable) { if (this.videoAvailable) {
this.selectedChip = -1 this.selectedChip = -1
@@ -370,8 +397,10 @@
var vidElement = this.$refs.vid_viewer var vidElement = this.$refs.vid_viewer
vidElement.width = trackDetails.width vidElement.width = trackDetails.width
vidElement.height = trackDetails.height vidElement.height = trackDetails.height
if (!this.otherSettings.disableVideo) { if (this.isSafari) {
this.videoFrameDetect(vidElement) this.videoFrameDetect(vidElement)
} else {
this.videoFrameDetectWorker(vidElement)
} }
return return
} }

View File

@@ -1,7 +1,114 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue' import { f7 } from 'framework7-vue'
let model = null
export default { export default {
methods: { methods: {
async loadModel(weights, preload) {
if (model && model.modelURL == weights) {
return model
} else if (model) {
tf.dispose(model)
}
model = await tf.loadGraphModel(weights)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
/*****************
* If preloading then run model
* once on fake data to preload
* weights for a faster response
*****************/
if (preload) {
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
model.predict(dummyT)
}
return model
},
async localDetect(imageData) {
console.time('mx: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('mx: pre-process')
console.time('mx: run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('mx: run prediction')
console.time('mx: post-process')
const outputSize = res.shape[1]
let rawBoxes = []
let rawScores = []
for (var i = 0; i < rawRes.length; i++) {
var getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
var getBox = rawRes[i].slice(0,4)
var boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
(getBox[1] + (getBox[3] / 2)) / modelHeight,
]
rawBoxes.push(boxCalc)
rawScores.push(getScores)
}
if (rawBoxes.length > 0) {
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let resBoxes = null
let validBoxes = []
let structureScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (var c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = resBoxes.dataSync()
tf.dispose(resBoxes)
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
validBoxes = []
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
const valid_detections_data = classes_data.length
var output = {
detections: []
}
for (var i =0; i < valid_detections_data; i++) {
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
"label": this.detectorLabels[classes_data[i]].name,
"confidence": scores_data[i] * 100
})
}
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('mx: post-process')
return output || { detections: [] }
},
getRemoteLabels() { getRemoteLabels() {
var self = this var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors` var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
@@ -65,5 +172,65 @@ export default {
this.detecting = false this.detecting = false
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.') f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
}, },
async videoFrameDetect (vidData) {
await this.loadModel(this.miniLocation)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
const target = this.$refs.target_image
await tf.nextFrame();
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
var imgWidth
var imgHeight
const imgAspect = vidData.width / vidData.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
while (this.videoAvailable) {
console.time('mx: frame-process')
try {
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
const res = model.predict(input)
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
let rawCoords = []
if (rawRes) {
for (var i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
foundTarget.push(Math.max(...getScores))
rawCoords.push(foundTarget)
}
}
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (var coord of rawCoords) {
console.log(`x: ${coord[0]}, y: ${coord[1]}`)
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / modelWidth) * imgWidth -5
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / modelHeight) * imgHeight -5
imageCtx.globalAlpha = coord[2]
imageCtx.drawImage(target, pointX, pointY, 20, 20)
}
}
tf.dispose(input)
tf.dispose(res)
tf.dispose(rawRes)
} catch (e) {
console.log(e)
}
console.timeEnd('mx: frame-process')
await tf.nextFrame();
}
}
} }
} }

View File

@@ -8,6 +8,7 @@
<f7-block-title medium>Details</f7-block-title> <f7-block-title medium>Details</f7-block-title>
<f7-list> <f7-list>
<f7-list-item title="Version" :after="alvinnVersion"></f7-list-item> <f7-list-item title="Version" :after="alvinnVersion"></f7-list-item>
<f7-list-item v-if="isSafari" title="Safari" after="Workers disabled"></f7-list-item>
</f7-list> </f7-list>
<f7-block-title medium>Models</f7-block-title> <f7-block-title medium>Models</f7-block-title>
<f7-list style="width: 100%;"> <f7-list style="width: 100%;">
@@ -52,6 +53,7 @@
miniHeadneckDetails: {}, miniHeadneckDetails: {},
alvinnVersion: store().getVersion, alvinnVersion: store().getVersion,
isCordova: !!window.cordova, isCordova: !!window.cordova,
isSafari: store().isSafari,
otherSettings: {} otherSettings: {}
} }
}, },