4 Commits

Author SHA1 Message Date
205f2da87d Clean up shared worker addition
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-07-25 10:54:02 -07:00
77b108af6c Add worker video detection
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-07-24 12:00:48 -07:00
cd6cad9e73 Add shared worker structure detection
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-07-23 14:18:49 -07:00
c7622c3602 Add basic worker function
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-07-18 20:51:27 -07:00
25 changed files with 368 additions and 959 deletions

View File

@@ -13,8 +13,6 @@ jobs:
uses: actions/checkout@v4
- name: Install node modules
run: npm install
- name: Add build number
run: sed -i 's/####/#${{ github.run_number }}/' ./src/js/store.js
- name: Build pwa
run: npm run build
- name: Replace previous dev pwa

5
.gitignore vendored
View File

@@ -40,8 +40,7 @@ cordova/platforms/
cordova/plugins/
cordova/www/
# Production build
www/
# VSCode settings
.vscode/settings.json

View File

@@ -47,10 +47,9 @@ The following site settings are avaible:
| name | description | values | default |
| --- | --- | --- | --- |
| `agreeExpire` | number of months before users are shown the site agreement dialog again<br />set to 0 to display dialog on every reload | integer >= 0 | 3 |
| `demo` | set to **true** to enable demo mode by default | boolean | false |
| `demo` | set to **true** to enable demo mode by default | boolean | false
| `regions` | array of regions names to enable | thorax, abdomen, limbs, head | [thorax, abdomen, limbs, head] |
| `useExternal` | detemines the ability to use an external detection server:<br />**none** - external server cannot be configured<br />**optional** - external server can be configured in the app's settings page<br />**list** - external server can be selected in the app's settings page but only the configured server(s) may be selected<br />**required** - external server settings from conf file will be used by default and disable server options in the settings page | none, optional, list, required | **optional** |
| `disableWorkers` | force app to use a single thread for detection computations instead of multi threading web workers | boolean | **optional** |
| `external` | properties of the external server(s) ALVINN may connect to<br />This setting must be a single element array if **useExternal** is set to **required**.<br />This setting must be an array of one or more elements if **useExternal** is set to **list** | external server settings array | []|
| `infoUrl` | root url for links to information about identified structures<br />Structure labels with spaces replaced by underscores will be appended to this value for full information links (*e.g.,* Abdominal_diapragm) | string | info link not shown |

View File

@@ -1,5 +1,5 @@
<?xml version='1.0' encoding='utf-8'?>
<widget id="edu.midwestern.alvinn" version="0.5.0-alpha" xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0" xmlns:android="http://schemas.android.com/apk/res/android">
<widget id="edu.midwestern.alvinn" version="0.5.0-rc" xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0" xmlns:android="http://schemas.android.com/apk/res/android">
<name>ALVINN</name>
<description>Anatomy Lab Visual Identification Neural Network.</description>
<author email="jgeorg@midwestern.edu" href="https://midwestern.edu">

View File

@@ -1,7 +1,7 @@
{
"name": "edu.midwestern.alvinn",
"displayName": "ALVINN",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"description": "Anatomy Lab Visual Identification Neural Network.",
"main": "index.js",
"scripts": {

173
package-lock.json generated
View File

@@ -1,16 +1,16 @@
{
"name": "alvinn",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "alvinn",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"hasInstallScript": true,
"license": "UNLICENSED",
"dependencies": {
"@tensorflow/tfjs": "^4.21.0",
"@tensorflow/tfjs": "^4.17.0",
"dom7": "^4.0.6",
"framework7": "^8.3.0",
"framework7-icons": "^5.0.5",
@@ -3354,17 +3354,16 @@
}
},
"node_modules/@tensorflow/tfjs": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.21.0.tgz",
"integrity": "sha512-7D/+H150ptvt+POMbsME3WlIvLiuBR2rCC2Z0hOKKb/5Ygkj7xsp/K2HzOvUj0g0yjk+utkU45QEYhnhjnbHRA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.17.0.tgz",
"integrity": "sha512-yXRBhpM3frlNA/YaPp6HNk9EfIi8han5RYeQA3R8OCa0Od+AfoG1PUmlxV8fE2wCorlGVyHsgpiJ6M9YZPB56w==",
"dependencies": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-webgl": "4.21.0",
"@tensorflow/tfjs-converter": "4.21.0",
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-data": "4.21.0",
"@tensorflow/tfjs-layers": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@tensorflow/tfjs-backend-webgl": "4.17.0",
"@tensorflow/tfjs-converter": "4.17.0",
"@tensorflow/tfjs-core": "4.17.0",
"@tensorflow/tfjs-data": "4.17.0",
"@tensorflow/tfjs-layers": "4.17.0",
"argparse": "^1.0.10",
"chalk": "^4.1.0",
"core-js": "3.29.1",
@@ -3376,10 +3375,9 @@
}
},
"node_modules/@tensorflow/tfjs-backend-cpu": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.21.0.tgz",
"integrity": "sha512-yS9Oisg4L48N7ML6677ilv1eP5Jt59S74skSU1cCsM4yBAtH4DAn9b89/JtqBISh6JadanfX26b4HCWQvMvqFg==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.17.0.tgz",
"integrity": "sha512-2VSCHnX9qhYTjw9HiVwTBSnRVlntKXeBlK7aSVsmZfHGwWE2faErTtO7bWmqNqw0U7gyznJbVAjlow/p+0RNGw==",
"dependencies": {
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
@@ -3388,16 +3386,15 @@
"yarn": ">= 1.3.2"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-backend-webgl": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.21.0.tgz",
"integrity": "sha512-7k6mb7dd0uF9jI51iunF3rhEXjvR/a613kjWZ0Rj3o1COFrneyku2C7cRMZERWPhbgXZ+dF+j9MdpGIpgtShIQ==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.17.0.tgz",
"integrity": "sha512-CC5GsGECCd7eYAUaKq0XJ48FjEZdgXZWPxgUYx4djvfUx5fQPp35hCSP9w/k463jllBMbjl2tKRg8u7Ia/LYzg==",
"dependencies": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@types/offscreencanvas": "~2019.3.0",
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
@@ -3406,23 +3403,21 @@
"yarn": ">= 1.3.2"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-converter": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.21.0.tgz",
"integrity": "sha512-cUhU+F1lGx2qnKk/gRy8odBh0PZlFz0Dl71TG8LVnj0/g352DqiNrKXlKO/po9aWzP8x0KUGC3gNMSMJW+T0DA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.17.0.tgz",
"integrity": "sha512-qFxIjPfomCuTrYxsFjtKbi3QfdmTTCWo+RvqD64oCMS0sjp7sUDNhJyKDoLx6LZhXlwXpHIVDJctLMRMwet0Zw==",
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-core": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.21.0.tgz",
"integrity": "sha512-ZbECwXps5wb9XXcGq4ZXvZDVjr5okc3I0+i/vU6bpQ+nVApyIrMiyEudP8f6vracVTvNmnlN62vUXoEsQb2F8g==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.17.0.tgz",
"integrity": "sha512-v9Q5430EnRpyhWNd9LVgXadciKvxLiq+sTrLKRowh26BHyAsams4tZIgX3lFKjB7b90p+FYifVMcqLTTHgjGpQ==",
"dependencies": {
"@types/long": "^4.0.1",
"@types/offscreencanvas": "~2019.7.0",
@@ -3439,31 +3434,28 @@
"node_modules/@tensorflow/tfjs-core/node_modules/@types/offscreencanvas": {
"version": "2019.7.3",
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.7.3.tgz",
"integrity": "sha512-ieXiYmgSRXUDeOntE1InxjWyvEelZGP63M+cGuquuRLuIKKT1osnkXjxev9B7d1nXSug5vpunx+gNlbVxMlC9A==",
"license": "MIT"
"integrity": "sha512-ieXiYmgSRXUDeOntE1InxjWyvEelZGP63M+cGuquuRLuIKKT1osnkXjxev9B7d1nXSug5vpunx+gNlbVxMlC9A=="
},
"node_modules/@tensorflow/tfjs-data": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.21.0.tgz",
"integrity": "sha512-LpJ/vyQMwYHkcVCqIRg7IVVw13VBY7rNAiuhmKP9S5NP/2ye4KA8BJ4XwDIDgjCVQM7glK9L8bMav++xCDf7xA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.17.0.tgz",
"integrity": "sha512-aPKrDFip+gXicWOFALeNT7KKQjRXFkHd/hNe/zs4mCFcIN00hy1PkZ6xkYsgrsdLDQMBSGeS4B4ZM0k5Cs88QA==",
"dependencies": {
"@types/node-fetch": "^2.1.2",
"node-fetch": "~2.6.1",
"string_decoder": "^1.3.0"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-core": "4.17.0",
"seedrandom": "^3.0.5"
}
},
"node_modules/@tensorflow/tfjs-layers": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.21.0.tgz",
"integrity": "sha512-a8KaMYlY3+llvE9079nvASKpaaf8xpCMdOjbgn+eGhdOGOcY7QuFUkd/2odvnXDG8fK/jffE1LoNOlfYoBHC4w==",
"license": "Apache-2.0 AND MIT",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.17.0.tgz",
"integrity": "sha512-DEE0zRKvf3LJ0EcvG5XouJYOgFGWYAneZ0K1d23969z7LfSyqVmBdLC6BTwdLKuJk3ouUJIKXU1TcpFmjDuh7g==",
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs/node_modules/regenerator-runtime": {
@@ -3480,8 +3472,7 @@
"node_modules/@types/long": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/@types/long/-/long-4.0.2.tgz",
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA==",
"license": "MIT"
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA=="
},
"node_modules/@types/minimist": {
"version": "1.2.5",
@@ -3501,7 +3492,6 @@
"version": "2.6.11",
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.11.tgz",
"integrity": "sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==",
"license": "MIT",
"dependencies": {
"@types/node": "*",
"form-data": "^4.0.0"
@@ -3516,8 +3506,7 @@
"node_modules/@types/offscreencanvas": {
"version": "2019.3.0",
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.3.0.tgz",
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q==",
"license": "MIT"
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q=="
},
"node_modules/@types/resolve": {
"version": "1.17.1",
@@ -3531,8 +3520,7 @@
"node_modules/@types/seedrandom": {
"version": "2.4.34",
"resolved": "https://registry.npmjs.org/@types/seedrandom/-/seedrandom-2.4.34.tgz",
"integrity": "sha512-ytDiArvrn/3Xk6/vtylys5tlY6eo7Ane0hvcx++TKo6RxQXuVfW0AF/oeWqAj9dN29SyhtawuXstgmPlwNcv/A==",
"license": "MIT"
"integrity": "sha512-ytDiArvrn/3Xk6/vtylys5tlY6eo7Ane0hvcx++TKo6RxQXuVfW0AF/oeWqAj9dN29SyhtawuXstgmPlwNcv/A=="
},
"node_modules/@types/trusted-types": {
"version": "2.0.6",
@@ -3658,8 +3646,7 @@
"node_modules/@webgpu/types": {
"version": "0.1.38",
"resolved": "https://registry.npmjs.org/@webgpu/types/-/types-0.1.38.tgz",
"integrity": "sha512-7LrhVKz2PRh+DD7+S+PVaFd5HxaWQvoMqBbsV9fNJO1pjUs1P8bM2vQVNfk+3URTqbuTI7gkXi0rfsN0IadoBA==",
"license": "BSD-3-Clause"
"integrity": "sha512-7LrhVKz2PRh+DD7+S+PVaFd5HxaWQvoMqBbsV9fNJO1pjUs1P8bM2vQVNfk+3URTqbuTI7gkXi0rfsN0IadoBA=="
},
"node_modules/acorn": {
"version": "8.11.2",
@@ -3827,8 +3814,7 @@
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"license": "MIT"
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
},
"node_modules/at-least-node": {
"version": "1.0.0",
@@ -4426,7 +4412,6 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"license": "MIT",
"dependencies": {
"delayed-stream": "~1.0.0"
},
@@ -4887,7 +4872,6 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"license": "MIT",
"engines": {
"node": ">=0.4.0"
}
@@ -5373,7 +5357,6 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"license": "MIT",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -6594,8 +6577,7 @@
"node_modules/long": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA==",
"license": "Apache-2.0"
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA=="
},
"node_modules/lower-case": {
"version": "2.0.2",
@@ -6706,7 +6688,6 @@
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
@@ -6715,7 +6696,6 @@
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"license": "MIT",
"dependencies": {
"mime-db": "1.52.0"
},
@@ -6843,7 +6823,6 @@
"version": "2.6.13",
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.13.tgz",
"integrity": "sha512-StxNAxh15zr77QvvkmveSQ8uCQ4+v5FkvNTj0OESmiHu+VRi/gXArXtkWMElOsOUNLtUEvI4yS+rdtOHZTwlQA==",
"license": "MIT",
"dependencies": {
"whatwg-url": "^5.0.0"
},
@@ -6862,20 +6841,17 @@
"node_modules/node-fetch/node_modules/tr46": {
"version": "0.0.3",
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==",
"license": "MIT"
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
},
"node_modules/node-fetch/node_modules/webidl-conversions": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==",
"license": "BSD-2-Clause"
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
},
"node_modules/node-fetch/node_modules/whatwg-url": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
"license": "MIT",
"dependencies": {
"tr46": "~0.0.3",
"webidl-conversions": "^3.0.0"
@@ -8505,8 +8481,7 @@
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg=="
},
"node_modules/semver": {
"version": "6.3.1",
@@ -11883,16 +11858,16 @@
}
},
"@tensorflow/tfjs": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.21.0.tgz",
"integrity": "sha512-7D/+H150ptvt+POMbsME3WlIvLiuBR2rCC2Z0hOKKb/5Ygkj7xsp/K2HzOvUj0g0yjk+utkU45QEYhnhjnbHRA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.17.0.tgz",
"integrity": "sha512-yXRBhpM3frlNA/YaPp6HNk9EfIi8han5RYeQA3R8OCa0Od+AfoG1PUmlxV8fE2wCorlGVyHsgpiJ6M9YZPB56w==",
"requires": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-webgl": "4.21.0",
"@tensorflow/tfjs-converter": "4.21.0",
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-data": "4.21.0",
"@tensorflow/tfjs-layers": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@tensorflow/tfjs-backend-webgl": "4.17.0",
"@tensorflow/tfjs-converter": "4.17.0",
"@tensorflow/tfjs-core": "4.17.0",
"@tensorflow/tfjs-data": "4.17.0",
"@tensorflow/tfjs-layers": "4.17.0",
"argparse": "^1.0.10",
"chalk": "^4.1.0",
"core-js": "3.29.1",
@@ -11908,35 +11883,35 @@
}
},
"@tensorflow/tfjs-backend-cpu": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.21.0.tgz",
"integrity": "sha512-yS9Oisg4L48N7ML6677ilv1eP5Jt59S74skSU1cCsM4yBAtH4DAn9b89/JtqBISh6JadanfX26b4HCWQvMvqFg==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.17.0.tgz",
"integrity": "sha512-2VSCHnX9qhYTjw9HiVwTBSnRVlntKXeBlK7aSVsmZfHGwWE2faErTtO7bWmqNqw0U7gyznJbVAjlow/p+0RNGw==",
"requires": {
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
}
},
"@tensorflow/tfjs-backend-webgl": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.21.0.tgz",
"integrity": "sha512-7k6mb7dd0uF9jI51iunF3rhEXjvR/a613kjWZ0Rj3o1COFrneyku2C7cRMZERWPhbgXZ+dF+j9MdpGIpgtShIQ==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.17.0.tgz",
"integrity": "sha512-CC5GsGECCd7eYAUaKq0XJ48FjEZdgXZWPxgUYx4djvfUx5fQPp35hCSP9w/k463jllBMbjl2tKRg8u7Ia/LYzg==",
"requires": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@types/offscreencanvas": "~2019.3.0",
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
}
},
"@tensorflow/tfjs-converter": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.21.0.tgz",
"integrity": "sha512-cUhU+F1lGx2qnKk/gRy8odBh0PZlFz0Dl71TG8LVnj0/g352DqiNrKXlKO/po9aWzP8x0KUGC3gNMSMJW+T0DA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.17.0.tgz",
"integrity": "sha512-qFxIjPfomCuTrYxsFjtKbi3QfdmTTCWo+RvqD64oCMS0sjp7sUDNhJyKDoLx6LZhXlwXpHIVDJctLMRMwet0Zw==",
"requires": {}
},
"@tensorflow/tfjs-core": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.21.0.tgz",
"integrity": "sha512-ZbECwXps5wb9XXcGq4ZXvZDVjr5okc3I0+i/vU6bpQ+nVApyIrMiyEudP8f6vracVTvNmnlN62vUXoEsQb2F8g==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.17.0.tgz",
"integrity": "sha512-v9Q5430EnRpyhWNd9LVgXadciKvxLiq+sTrLKRowh26BHyAsams4tZIgX3lFKjB7b90p+FYifVMcqLTTHgjGpQ==",
"requires": {
"@types/long": "^4.0.1",
"@types/offscreencanvas": "~2019.7.0",
@@ -11955,9 +11930,9 @@
}
},
"@tensorflow/tfjs-data": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.21.0.tgz",
"integrity": "sha512-LpJ/vyQMwYHkcVCqIRg7IVVw13VBY7rNAiuhmKP9S5NP/2ye4KA8BJ4XwDIDgjCVQM7glK9L8bMav++xCDf7xA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.17.0.tgz",
"integrity": "sha512-aPKrDFip+gXicWOFALeNT7KKQjRXFkHd/hNe/zs4mCFcIN00hy1PkZ6xkYsgrsdLDQMBSGeS4B4ZM0k5Cs88QA==",
"requires": {
"@types/node-fetch": "^2.1.2",
"node-fetch": "~2.6.1",
@@ -11965,9 +11940,9 @@
}
},
"@tensorflow/tfjs-layers": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.21.0.tgz",
"integrity": "sha512-a8KaMYlY3+llvE9079nvASKpaaf8xpCMdOjbgn+eGhdOGOcY7QuFUkd/2odvnXDG8fK/jffE1LoNOlfYoBHC4w==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.17.0.tgz",
"integrity": "sha512-DEE0zRKvf3LJ0EcvG5XouJYOgFGWYAneZ0K1d23969z7LfSyqVmBdLC6BTwdLKuJk3ouUJIKXU1TcpFmjDuh7g==",
"requires": {}
},
"@types/estree": {

View File

@@ -1,7 +1,7 @@
{
"name": "alvinn",
"private": true,
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"description": "ALVINN",
"repository": "",
"license": "UNLICENSED",
@@ -14,8 +14,7 @@
"cordova-ios": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova run ios",
"build-cordova-android": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova build android",
"cordova-android": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova run android",
"postinstall": "cpy --flat ./node_modules/framework7-icons/fonts/*.* ./src/fonts/",
"preview": "vite preview"
"postinstall": "cpy --flat ./node_modules/framework7-icons/fonts/*.* ./src/fonts/"
},
"browserslist": [
"IOS >= 15",
@@ -24,7 +23,7 @@
"last 5 Firefox versions"
],
"dependencies": {
"@tensorflow/tfjs": "^4.21.0",
"@tensorflow/tfjs": "^4.17.0",
"dom7": "^4.0.6",
"framework7": "^8.3.0",
"framework7-icons": "^5.0.5",

View File

@@ -6,7 +6,6 @@ regions:
- limbs
- head
useExternal: none
disableWorkers: false
external:
- name: Mserver
address: "192.169.1.105"

View File

@@ -1,39 +1,45 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue'
let model = null
onmessage = function (e) {
switch (e.data.call) {
case 'loadModel':
loadModel(e.data.weights,e.data.preload).then(() => {
postMessage({success: 'model'})
}).catch((err) => {
postMessage({error: true, message: err.message})
})
break
case 'localDetect':
localDetect(e.data.image).then((dets) => {
postMessage({success: 'detection', detections: dets})
}).catch((err) => {
//throw (err)
postMessage({error: true, message: err.message})
})
e.data.image.close()
break
case 'videoFrame':
videoFrame(e.data.image).then((frameDet) =>{
postMessage({succes: 'frame', coords: frameDet.cds, modelWidth: frameDet.mW, modelHeight: frameDet.mH})
}).catch((err) => {
postMessage({error: true, message: err.message})
})
e.data.image.close()
break
default:
console.log('Worker message incoming:')
console.log(e)
postMessage({result1: 'First result', result2: 'Second result'})
break
self.onconnect = (e) => {
const port = e.ports[0];
port.onmessage = function (e) {
switch (e.data.call) {
case 'loadModel':
loadModel('.' + e.data.weights,e.data.preload).then(() => {
port.postMessage({success: 'model'})
}).catch((err) => {
port.postMessage({error: true, message: err.message})
})
break
case 'localDetect':
localDetect(e.data.image).then((dets) => {
port.postMessage({success: 'detection', detections: dets})
}).catch((err) => {
port.postMessage({error: true, message: err.message})
})
e.data.image.close()
break
case 'videoFrame':
videoFrame(e.data.image).then((frameDet) =>{
port.postMessage({succes: 'frame', coords: frameDet.cds, modelWidth: frameDet.mW, modelHeight: frameDet.mH})
}).catch((err) => {
port.postMessage({error: true, message: err.message})
})
e.data.image.close()
break
default:
console.log('Worker message incoming:')
console.log(e)
port.postMessage({result1: 'First result', result2: 'Second result'})
break
}
}
port.start()
}
async function loadModel(weights, preload) {
@@ -57,7 +63,7 @@ async function loadModel(weights, preload) {
}
async function localDetect(imageData) {
console.time('sw: pre-process')
console.time('pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
@@ -65,28 +71,24 @@ async function localDetect(imageData) {
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('sw: pre-process')
console.timeEnd('pre-process')
console.time('sw: run prediction')
console.time('run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('sw: run prediction')
console.timeEnd('run prediction')
console.time('sw: post-process')
console.time('post-process')
const outputSize = res.shape[1]
const output = {
detections: []
}
let rawBoxes = []
let rawScores = []
let getScores, getBox, boxCalc
for (let i = 0; i < rawRes.length; i++) {
getScores = rawRes[i].slice(4)
for (var i = 0; i < rawRes.length; i++) {
var getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
getBox = rawRes[i].slice(0,4)
boxCalc = [
var getBox = rawRes[i].slice(0,4)
var boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
@@ -105,7 +107,7 @@ async function localDetect(imageData) {
let boxes_data = []
let scores_data = []
let classes_data = []
for (let c = 0; c < outputSize - 4; c++) {
for (var c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
@@ -113,7 +115,7 @@ async function localDetect(imageData) {
tf.dispose(resBoxes)
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
let outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
@@ -123,15 +125,18 @@ async function localDetect(imageData) {
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
tf.dispose(resBoxes)
const valid_detections_data = classes_data.length
for (let i =0; i < valid_detections_data; i++) {
let [dLeft, dTop, dRight, dBottom] = boxes_data[i]
var output = {
detections: []
}
for (var i =0; i < valid_detections_data; i++) {
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
// "label": this.detectorLabels[classes_data[i]].name,
"label": classes_data[i],
"confidence": scores_data[i] * 100
})
@@ -139,14 +144,14 @@ async function localDetect(imageData) {
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('sw: post-process')
console.timeEnd('post-process')
return output || { detections: [] }
}
async function videoFrame (vidData) {
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
console.time('sw: frame-process')
console.time('frame-process')
let rawCoords = []
try {
const input = tf.tidy(() => {
@@ -156,7 +161,7 @@ async function videoFrame (vidData) {
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
if (rawRes) {
for (let i = 0; i < rawRes.length; i++) {
for (var i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
@@ -172,6 +177,6 @@ async function videoFrame (vidData) {
} catch (e) {
console.log(e)
}
console.timeEnd('sw: frame-process')
console.timeEnd('frame-process')
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
}

View File

@@ -74,14 +74,6 @@
}
},
async created () {
document.addEventListener('keydown', e => {
if (e.code == 'KeyR') {
console.log(f7.views.main.router.history)
}
if (e.code == 'KeyB') {
f7.views.main.router.back()
}
})
if (!window.cordova) {
const confText = await fetch('./conf/conf.yaml')
.then((mod) => { return mod.text() })
@@ -106,9 +98,6 @@
store().set('siteDemo',this.siteConf?.demo)
store().set('infoUrl',this.siteConf?.infoUrl)
const loadServerSettings = localStorage.getItem('serverSettings')
if (this.siteConf.disableWorkers) {
store().disableWorkers()
}
if (this.siteConf?.useExternal) {
if (!['none','list','optional','required'].includes(this.siteConf.useExternal)) {
console.warn(`'${this.siteConf.useExternal}' is not a valid value for useExternal configuration: using 'optional'`)

View File

@@ -17,9 +17,6 @@
<path v-else-if="icon == 'head'" d="M194-80v-395h80v315h280v-193l105-105q29-29 45-65t16-77q0-40-16.5-76T659-741l-25-26-127 127H347l-43 43-57-56 67-67h160l160-160 82 82q40 40 62 90.5T800-600q0 57-22 107.5T716-402l-82 82v240H194Zm197-187L183-475q-11-11-17-26t-6-31q0-16 6-30.5t17-25.5l84-85 124 123q28 28 43.5 64.5T450-409q0 40-15 76.5T391-267Z"/>
<path v-else-if="icon == 'photo_sample'" d="M240-80q-33 0-56.5-23.5T160-160v-640q0-33 23.5-56.5T240-880h480q33 0 56.5 23.5T800-800v640q0 33-23.5 56.5T720-80H240Zm0-80h480v-640h-80v280l-100-60-100 60v-280H240v640Zm40-80h400L545-420 440-280l-65-87-95 127Zm-40 80v-640 640Zm200-360 100-60 100 60-100-60-100 60Z"/>
<path v-else-if="icon == 'reset_slide'" d="M520-330v-60h160v60H520Zm60 210v-50h-60v-60h60v-50h60v160h-60Zm100-50v-60h160v60H680Zm40-110v-160h60v50h60v60h-60v50h-60Zm111-280h-83q-26-88-99-144t-169-56q-117 0-198.5 81.5T200-480q0 72 32.5 132t87.5 98v-110h80v240H160v-80h94q-62-50-98-122.5T120-480q0-75 28.5-140.5t77-114q48.5-48.5 114-77T480-840q129 0 226.5 79.5T831-560Z"/>
<path v-else-if="icon == 'zoom_to'" d="M440-40v-167l-44 43-56-56 140-140 140 140-56 56-44-43v167h-80ZM220-340l-56-56 43-44H40v-80h167l-43-44 56-56 140 140-140 140Zm520 0L600-480l140-140 56 56-43 44h167v80H753l43 44-56 56Zm-260-80q-25 0-42.5-17.5T420-480q0-25 17.5-42.5T480-540q25 0 42.5 17.5T540-480q0 25-17.5 42.5T480-420Zm0-180L340-740l56-56 44 43v-167h80v167l44-43 56 56-140 140Z"/>
<path v-else-if="icon == 'reset_zoom'" d="M480-320v-100q0-25 17.5-42.5T540-480h100v60H540v100h-60Zm60 240q-25 0-42.5-17.5T480-140v-100h60v100h100v60H540Zm280-240v-100H720v-60h100q25 0 42.5 17.5T880-420v100h-60ZM720-80v-60h100v-100h60v100q0 25-17.5 42.5T820-80H720Zm111-480h-83q-26-88-99-144t-169-56q-117 0-198.5 81.5T200-480q0 72 32.5 132t87.5 98v-110h80v240H160v-80h94q-62-50-98-122.5T120-480q0-75 28.5-140.5t77-114q48.5-48.5 114-77T480-840q129 0 226.5 79.5T831-560Z"/>
<path v-else-if="icon == 'clipboard'" d="M200-120q-33 0-56.5-23.5T120-200v-560q0-33 23.5-56.5T200-840h167q11-35 43-57.5t70-22.5q40 0 71.5 22.5T594-840h166q33 0 56.5 23.5T840-760v560q0 33-23.5 56.5T760-120H200Zm0-80h560v-560h-80v120H280v-120h-80v560Zm280-560q17 0 28.5-11.5T520-800q0-17-11.5-28.5T480-840q-17 0-28.5 11.5T440-800q0 17 11.5 28.5T480-760Z"/>
</svg>
</template>
@@ -47,10 +44,7 @@
'limbs',
'head',
'photo_sample',
'reset_slide',
'zoom_to',
'reset_zoom',
'clipboard'
'reset_slide'
]
return iconList.includes(value)
}

View File

@@ -150,7 +150,8 @@
.structure-info {
position: absolute;
z-index: 3;
color: #0f206c;
color: rgb(15, 32, 108);
background: yellow;
border-radius: 100%;
}

View File

@@ -18,7 +18,7 @@
<meta name="msapplication-tap-highlight" content="no">
<title>ALVINN</title>
<% if (TARGET === 'web') { %>
<meta name="mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="apple-touch-icon" href="icons/apple-touch-icon.png">
<link rel="icon" href="icons/favicon.png">

View File

@@ -4,11 +4,9 @@ const state = reactive({
disclaimerAgreement: false,
enabledRegions: ['thorax','abdomen','limbs','head'],
regionIconSet: Math.floor(Math.random() * 3) + 1,
version: '0.5.0-alpha',
build: '####',
version: '0.5.0-rc',
fullscreen: false,
useExternal: 'optional',
workersEnabled: 'true',
siteDemo: false,
externalServerList: [],
infoUrl: false
@@ -23,10 +21,6 @@ const agree = () => {
state.disclaimerAgreement = true
}
const disableWorkers = () => {
state.workersEnabled = false
}
const getServerList = () => {
if (state.useExternal == 'required') {
return state.externalServerList[0]
@@ -52,15 +46,12 @@ export default () => ({
isFullscreen: computed(() => state.fullscreen),
demoMode: computed(() => state.siteDemo),
externalType: computed(() => state.useExternal),
useWorkers: computed(() => state.workersEnabled),
getRegions: computed(() => state.enabledRegions),
getVersion: computed(() => state.version),
getBuild: computed(() => state.build),
getIconSet: computed(() => state.regionIconSet),
getInfoUrl: computed(() => state.infoUrl),
set,
agree,
disableWorkers,
getServerList,
toggleFullscreen
})

View File

@@ -1,157 +0,0 @@
class Coordinate {
constructor(x, y) {
this.x = x
this.y = y
}
toRefFrame(...frameArgs) {
if (frameArgs.length == 0) {
return {x: this.x, y: this.y}
}
let outFrames = []
//Get Coordinates in Image Reference Frame
if (frameArgs[0].tagName == 'IMG' && frameArgs[0].width && frameArgs[0].height) {
outFrames.push({
x: this.x * frameArgs[0].width,
y: this.y * frameArgs[0].height
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Image')
}
//Get Coordinates in Canvas Reference Frame
if (frameArgs[1]) {
if (frameArgs[1].tagName == 'CANVAS' && frameArgs[1].width && frameArgs[1].height) {
let imgWidth
let imgHeight
const imgAspect = frameArgs[0].width / frameArgs[0].height
const rendAspect = frameArgs[1].width / frameArgs[1].height
if (imgAspect >= rendAspect) {
imgWidth = frameArgs[1].width
imgHeight = frameArgs[1].width / imgAspect
} else {
imgWidth = frameArgs[1].height * imgAspect
imgHeight = frameArgs[1].height
}
outFrames.push({
x: (frameArgs[1].width - imgWidth) / 2 + this.x * imgWidth,
y: (frameArgs[1].height - imgHeight) / 2 + this.y * imgHeight
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Canvas')
}
}
//Get Coordinates in Screen Reference Frame
if (frameArgs[2]) {
if (frameArgs[2].zoom && frameArgs[2].offset && frameArgs[2].offset.x !== undefined && frameArgs[2].offset.y !== undefined) {
outFrames.push({
x: outFrames[1].x * frameArgs[2].zoom + frameArgs[2].offset.x,
y: outFrames[1].y * frameArgs[2].zoom + frameArgs[2].offset.y
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Screen')
}
}
return outFrames
}
toString() {
return `(x: ${this.x}, y: ${this.y})`
}
}
export class StructureBox {
constructor(top, left, bottom, right) {
this.topLeft = new Coordinate(left, top)
this.bottomRight = new Coordinate(right, bottom)
}
getBoxes(boxType, ...frameArgs) {
let lowerH, lowerV, calcSide
switch (boxType) {
case 'point':
lowerH = 'right'
lowerV = 'bottom'
break
case 'side':
lowerH = 'width'
lowerV = 'height'
calcSide = true
break
default:
throw new Error(`StructureBox: invalid boxType - ${boxType}`)
}
if (frameArgs.length == 0) {
return {
left: this.topLeft.x,
top: this.topLeft.y,
[lowerH]: this.bottomRight.x - ((calcSide) ? this.topLeft.x : 0),
[lowerV]: this.bottomRight.y - ((calcSide) ? this.topLeft.y : 0)
}
}
const tL = this.topLeft.toRefFrame(...frameArgs)
const bR = this.bottomRight.toRefFrame(...frameArgs)
let outBoxes = []
tL.forEach((cd, i) => {
outBoxes.push({
left: cd.x,
top: cd.y,
[lowerH]: bR[i].x - ((calcSide) ? cd.x : 0),
[lowerV]: bR[i].y - ((calcSide) ? cd.y : 0)
})
})
return outBoxes
}
}
export class Structure {
constructor(structResult) {
this.label = structResult.label
this.confidence = structResult.confidence
this.box = new StructureBox(
structResult.top,
structResult.left,
structResult.bottom,
structResult.right
)
this.deleted = false
this.index = -1
this.passThreshold = true
this.searched = false
}
get resultIndex() {
return this.index
}
set resultIndex(newIdx) {
this.index = newIdx
}
get isDeleted() {
return this.deleted
}
set isDeleted(del) {
this.deleted = !!del
}
get isSearched() {
return this.searched
}
set isSearched(ser) {
this.searched = !!ser
}
get aboveThreshold() {
return this.passThreshold
}
setThreshold(level) {
if (typeof level != 'number') {
throw new Error(`Structure: invalid threshold level ${level}`)
}
this.passThreshold = this.confidence >= level
}
}

View File

@@ -3,11 +3,11 @@ import { f7 } from 'framework7-vue'
export default {
methods: {
async openCamera(imContain) {
let cameraLoaded = false
var cameraLoaded = false
const devicesList = await navigator.mediaDevices.enumerateDevices()
let videoDeviceAvailable = devicesList.some( d => d.kind == "videoinput")
if (videoDeviceAvailable) {
let vidConstraint = {
this.videoDeviceAvailable = devicesList.some( d => d.kind == "videoinput")
if (this.videoDeviceAvailable) {
var vidConstraint = {
video: {
width: {
ideal: imContain.offsetWidth
@@ -41,24 +41,20 @@ export default {
tempCtx.drawImage(vidViewer, 0, 0)
this.getImage(tempCVS.toDataURL())
},
async videoFrameDetectWorker (vidData, vidWorker) {
const startDetection = () => {
createImageBitmap(vidData).then(imVideoFrame => {
vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
})
}
vidData.addEventListener('resize',startDetection,{once: true})
vidWorker.onmessage = (eVid) => {
async videoFrameDetect (vidData) {
const vidWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'})
vidWorker.port.onmessage = (eVid) => {
self = this
if (eVid.data.error) {
console.log(eVid.data.message)
f7.dialog.alert(`ALVINN AI model error: ${eVid.data.message}`)
} else if (this.videoAvailable) {
createImageBitmap(vidData).then(imVideoFrame => {
vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
vidWorker.port.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
})
if (eVid.data.coords) {
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (let coord of eVid.data.coords) {
for (var coord of eVid.data.coords) {
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / eVid.data.modelWidth) * imgWidth - 10
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / eVid.data.modelHeight) * imgHeight - 10
console.debug(`cx: ${pointX}, cy: ${pointY}`)
@@ -69,10 +65,12 @@ export default {
}
}
vidWorker.port.postMessage({call: 'loadModel', weights: this.miniLocation, preload: true})
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
const target = this.$refs.target_image
let imgWidth, imgHeight
var imgWidth
var imgHeight
f7.utils.nextFrame(() => {
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight

View File

@@ -56,7 +56,7 @@
},
computed: {
commentText () {
let text = f7.textEditor.get('.comment-editor').getValue()
var text = f7.textEditor.get('.comment-editor').getValue()
if (this.userEmail) {
text += `\\n\\nSubmitted by: ${this.userEmail}`
}
@@ -65,9 +65,9 @@
},
methods: {
sendFeedback () {
let self = this
const issueURL = `https://gitea.azgeorgis.net/api/v1/repos/Georgi_Lab/ALVINN_f7/issues?access_token=9af8ae15b1ee5a98afcb3083bb488e4cf3c683af`
let xhr = new XMLHttpRequest()
var self = this
var issueURL = `https://gitea.azgeorgis.net/api/v1/repos/Georgi_Lab/ALVINN_f7/issues?access_token=9af8ae15b1ee5a98afcb3083bb488e4cf3c683af`
var xhr = new XMLHttpRequest()
xhr.open("POST", issueURL)
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.setRequestHeader('accept', 'application/json')

View File

@@ -1,36 +1,23 @@
<template>
<f7-page name="detect" :id="detectorName + '-detect-page'" @wheel="(e = $event) => e.preventDefault()" @touchmove="(e = $event) => e.preventDefault()">
<f7-page name="detect" :id="detectorName + '-detect-page'">
<!-- Top Navbar -->
<f7-navbar :sliding="false" :back-link="true" back-link-url="/" back-link-force>
<f7-nav-title sliding>{{ regionTitle }}</f7-nav-title>
<f7-nav-title sliding>{{ regions[activeRegion] }}</f7-nav-title>
<f7-nav-right>
<f7-link v-if="!isCordova" :icon-only="true" tooltip="Fullscreen" :icon-f7="isFullscreen ? 'viewfinder_circle_fill' : 'viewfinder'" @click="toggleFullscreen"></f7-link>
<f7-link :icon-only="true" tooltip="ALVINN help" icon-f7="question_circle_fill" href="/help/"></f7-link>
</f7-nav-right>
</f7-navbar>
<f7-block class="detect-grid">
<!--<div style="position: absolute;">{{ debugInfo ? JSON.stringify(debugInfo) : "No Info Available" }}</div>-->
<div class="image-container" ref="image_container">
<SvgIcon v-if="!imageView.src && !videoAvailable" :icon="f7route.params.region" fill-color="var(--avn-theme-color)"/>
<SvgIcon v-if="!imageView.src && !videoAvailable" :icon="f7route.params.region" fill-color="var(--avn-theme-color)" @click="selectImage" />
<div class="vid-container" :style="`display: ${videoAvailable ? 'block' : 'none'}; position: absolute; width: 100%; height: 100%;`">
<video id="vid-view" ref="vid_viewer" :srcObject="cameraStream" :autoPlay="true" style="width: 100%; height: 100%"></video>
<f7-button @click="captureVidFrame()" style="position: absolute; bottom: 32px; left: 50%; transform: translateX(-50%); z-index: 3;" fill large>Capture</f7-button>
</div>
<canvas
id="im-draw"
ref="image_cvs"
@wheel="spinWheel($event)"
@mousedown.middle="startMove($event)"
@mousemove="makeMove($event)"
@mouseup.middle="endMove($event)"
@touchstart="startTouch($event)"
@touchend="endTouch($event)"
@touchmove="moveTouch($event)"
@click="structureClick"
:style="`display: ${(imageLoaded || videoAvailable) ? 'block' : 'none'}; flex: 1 1 0%; max-width: 100%; max-height: 100%; min-width: 0; min-height: 0; background-size: contain; background-position: center; background-repeat: no-repeat; z-index: 2;`"
></canvas>
<f7-link v-if="getInfoUrl && (selectedChip > -1) && showResults[selectedChip]"
:style="`left: ${infoLinkPos.x}px; top: ${infoLinkPos.y}px; transform: translate(-50%,-50%); background: hsla(${showResults[selectedChip].confidence / 100 * 120}deg, 100%, 50%, .5)`"
<canvas id="im-draw" ref="image_cvs" @click="structureClick" :style="`display: ${(imageLoaded || videoAvailable) ? 'block' : 'none'}; flex: 1 1 0%; max-width: 100%; max-height: 100%; min-width: 0; min-height: 0; background-size: contain; background-position: center; background-repeat: no-repeat; z-index: 2;`" />
<f7-link v-if="getInfoUrl && (selectedChip > -1)"
:style="`left: ${infoLinkPos.x}px; top: ${infoLinkPos.y}px; transform: translate(calc(-50% - ${infoLinkPos.adj}px),calc(-50% - ${infoLinkPos.adj}px));`"
class="structure-info"
:icon-only="true"
icon-f7="info"
@@ -74,19 +61,16 @@
</f7-button>
</div>
<f7-segmented class="image-menu" raised>
<f7-button popover-open="#region-popover">
<RegionIcon :region="activeRegion" :iconSet="getIconSet" />
</f7-button>
<f7-button v-if="!videoAvailable" :class="(!modelLoading) ? '' : 'disabled'" popover-open="#capture-popover">
<SvgIcon icon="camera_add"/>
</f7-button>
<f7-button v-if="videoAvailable" @click="closeCamera()">
<SvgIcon icon="no_photography"/>
</f7-button>
<f7-button v-if="!structureZoomed && selectedChip >= 0" style="height: auto; width: auto;" popover-close="#image-popover" @click="zoomToSelected()">
<SvgIcon icon="zoom_to" />
</f7-button>
<f7-button v-else :class="(canvasZoom != 1) ? '' : 'disabled'" style="height: auto; width: auto;" popover-close="#image-popover" @click="resetZoom()">
<SvgIcon icon="reset_zoom" />
</f7-button>
<f7-button @click="toggleSettings()" :class="(imageLoaded) ? '' : 'disabled'">
<f7-button @click="() => showDetectSettings = !showDetectSettings" :class="(imageLoaded) ? '' : 'disabled'">
<SvgIcon icon="visibility"/>
<f7-badge v-if="numResults && (showResults.length != numResults)" color="red" style="position: absolute; right: 15%; top: 15%;">{{ showResults.length - numResults }}</f7-badge>
</f7-button>
@@ -109,6 +93,23 @@
</f7-page>
</f7-panel>
<f7-popover id="region-popover" class="popover-button-menu">
<f7-segmented raised class="segment-button-menu">
<f7-button :class="(getRegions.includes('thorax')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/thorax/" popover-close="#region-popover">
<RegionIcon :region="0" :iconSet="getIconSet" />
</f7-button>
<f7-button :class="(getRegions.includes('abdomen')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/abdomen/" popover-close="#region-popover">
<RegionIcon :region="1" :iconSet="getIconSet" />
</f7-button>
<f7-button :class="(getRegions.includes('limbs')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/limbs/" popover-close="#region-popover">
<RegionIcon :region="2" :iconSet="getIconSet" />
</f7-button>
<f7-button :class="(getRegions.includes('head')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/head/" popover-close="#region-popover">
<RegionIcon :region="3" :iconSet="getIconSet" />
</f7-button>
</f7-segmented>
</f7-popover>
<f7-popover id="capture-popover" class="popover-button-menu">
<f7-segmented raised class="segment-button-menu">
<f7-button style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('camera')">
@@ -117,9 +118,6 @@
<f7-button style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('file')">
<SvgIcon icon="photo_library" />
</f7-button>
<f7-button v-if="secureProtocol" style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('clipboard')">
<SvgIcon icon="clipboard" />
</f7-button>
<f7-button v-if="demoEnabled" style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('sample')">
<SvgIcon icon="photo_sample"/>
</f7-button>
@@ -141,27 +139,9 @@
import submitMixin from './submit-mixin'
import detectionMixin from './detection-mixin'
import cameraMixin from './camera-mixin'
import touchMixin from './touch-mixin'
import detectionWorker from '@/assets/detect-worker.js?worker&inline'
import { Structure, StructureBox } from '../js/structures'
const regions = ['Thorax','Abdomen/Pelvis','Limbs','Head and Neck']
let activeRegion = 4
let classesList = []
let imageLoadMode = "environment"
let serverSettings = {}
let otherSettings = {}
let modelLocation = ''
let miniLocation = ''
let reloadModel = false
let detectWorker = null
let vidWorker = null
let canvasMoving = false
let imageLocation = new StructureBox(0, 0, 1, 1)
export default {
mixins: [submitMixin, detectionMixin, cameraMixin, touchMixin],
mixins: [submitMixin, detectionMixin, cameraMixin],
props: {
f7route: Object,
},
@@ -171,28 +151,34 @@
},
data () {
return {
regions: ['Thorax','Abdomen/Pelvis','Limbs','Head and Neck'],
resultData: {},
selectedChip: -1,
activeRegion: 4,
classesList: [],
imageLoaded: false,
imageView: new Image(),
imageLoadMode: "environment",
detecting: false,
detectPanel: false,
showDetectSettings: false,
detectorName: '',
detectorLevel: 50,
detectorLabels: [],
serverSettings: {},
otherSettings: {},
isCordova: !!window.cordova,
secureProtocol: location.protocol == 'https:',
uploadUid: null,
uploadDirty: false,
modelLocation: '',
miniLocation: '',
modelLoading: true,
reloadModel: false,
videoDeviceAvailable: false,
videoAvailable: false,
cameraStream: null,
infoLinkPos: {},
canvasOffset: {x: 0, y: 0},
canvasZoom: 1,
structureZoomed: false,
debugInfo: null
workerScript: null
}
},
setup() {
@@ -200,78 +186,55 @@
},
created () {
let loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) otherSettings = JSON.parse(loadOtherSettings)
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
let modelRoot = this.isCordova ? 'https://localhost' : '.'
this.detectorName = this.f7route.params.region
switch (this.detectorName) {
case 'thorax':
activeRegion = 0
this.activeRegion = 0
break;
case 'abdomen':
activeRegion = 1
this.activeRegion = 1
break;
case 'limbs':
activeRegion = 2
this.activeRegion = 2
break;
case 'head':
activeRegion = 3
this.activeRegion = 3
break;
}
let modelJ = `../models/${this.detectorName}${otherSettings.mini ? '-mini' : ''}/model.json`
let miniJ = `../models/${this.detectorName}-mini/model.json`
modelLocation = new URL(modelJ,import.meta.url).href
miniLocation = new URL(miniJ,import.meta.url).href
let classesJ = `../models/${this.detectorName}/classes.json`
fetch(new URL(classesJ,import.meta.url).href)
this.modelLocation = `${modelRoot}/models/${this.detectorName}${this.otherSettings.mini ? '-mini' : ''}/model.json`
this.miniLocation = `${modelRoot}/models/${this.detectorName}-mini/model.json`
fetch(`${modelRoot}/models/${this.detectorName}/classes.json`)
.then((mod) => { return mod.json() })
.then((classes) => {
classesList = classes
this.detectorLabels = classesList.map( l => { return {'name': l, 'detect': true} } )
this.classesList = classes
this.detectorLabels = this.classesList.map( l => { return {'name': l, 'detect': true} } )
})
const loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) serverSettings = JSON.parse(loadServerSettings)
var loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings)
},
mounted () {
if (serverSettings && serverSettings.use) {
const mountWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'})
mountWorker.port.onmessage = (eMount) => {
self = this
if (eMount.data.error) {
console.log(eMount.data.message)
f7.dialog.alert(`ALVINN AI model error: ${eMount.data.message}`)
}
self.modelLoading = false
}
if (this.serverSettings && this.serverSettings.use) {
this.getRemoteLabels()
this.modelLoading = false
} else {
this.modelLoading = true
if (!this.useWorkers) {
this.loadModel(modelLocation, true).then(() => {
this.modelLoading = false
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
})
} else {
detectWorker = new detectionWorker()
detectWorker.onmessage = (eMount) => {
self = this
if (eMount.data.error) {
console.log(eMount.data.message)
f7.dialog.alert(`ALVINN AI model error: ${eMount.data.message}`)
}
self.modelLoading = false
}
vidWorker = new detectionWorker()
vidWorker.onmessage = (eMount) => {
self = this
if (eMount.data.error) {
console.log(eMount.data.message)
f7.dialog.alert(`ALVINN AI nano model error: ${eMount.data.message}`)
}
}
detectWorker.postMessage({call: 'loadModel', weights: modelLocation, preload: true})
vidWorker.postMessage({call: 'loadModel', weights: miniLocation, preload: true})
}
mountWorker.port.postMessage({call: 'loadModel', weights: this.modelLocation, preload: true})
}
window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') }
},
computed: {
regionTitle () {
return regions[activeRegion]
},
message () {
if (this.modelLoading) {
return "Preparing ALVINN..."
@@ -284,17 +247,17 @@
}
},
showResults () {
let filteredResults = this.resultData.detections
var filteredResults = this.resultData.detections
if (!filteredResults) return []
const allSelect = this.detectorLabels.every( s => { return s.detect } )
const selectedLabels = this.detectorLabels
var allSelect = this.detectorLabels.every( s => { return s.detect } )
var selectedLabels = this.detectorLabels
.filter( l => { return l.detect })
.map( l => { return l.name })
filteredResults.forEach( (d, i) => {
d.resultIndex = i
d.setThreshold(this.detectorLevel)
d.isSearched = allSelect || selectedLabels.includes(d.label)
filteredResults[i].resultIndex = i
filteredResults[i].aboveThreshold = d.confidence >= this.detectorLevel
filteredResults[i].isSearched = allSelect || selectedLabels.includes(d.label)
})
if (!filteredResults.some( s => s.resultIndex == this.selectedChip && s.aboveThreshold && s.isSearched && !s.isDeleted)) {
@@ -315,13 +278,13 @@
}
},
demoEnabled () {
return otherSettings.demo || this.demoMode
return this.otherSettings.demo || this.demoMode
},
infoLinkTarget () {
if (!this.getInfoUrl) return ''
let structure = this.showResults.find( r => r.resultIndex == this.selectedChip)
return structure ? this.getInfoUrl + structure.label.replaceAll(' ','_') : ''
},
return this.getInfoUrl + structure.label.replaceAll(' ','_')
}
},
methods: {
chipGradient (confVal) {
@@ -329,74 +292,45 @@
return `--chip-media-gradient: conic-gradient(from ${270 - (confFactor * 360 / 2)}deg, hsl(${confFactor * 120}deg, 100%, 50%) ${confFactor}turn, hsl(${confFactor * 120}deg, 50%, 66%) ${confFactor}turn)`
},
async setData () {
if (detectWorker) {
detectWorker.onmessage = (eDetect) => {
self = this
if (eDetect.data.error) {
self.detecting = false
self.resultData = {}
loadFailure()
f7.dialog.alert(`ALVINN structure finding error: ${eDetect.data.message}`)
} else if (eDetect.data.success == 'detection') {
self.detecting = false
self.resultData = {detections: []}
eDetect.data.detections.detections.forEach((d) => {
d.label = self.detectorLabels[d.label].name
let detectedStructure = new Structure(d)
self.resultData.detections.push(detectedStructure)
})
self.uploadDirty = true
} else if (eDetect.data.success == 'model') {
reloadModel = false
loadSuccess()
const detectWorker = new SharedWorker('../assets/detect-worker.js',{type: 'module'})
detectWorker.port.onmessage = (eDetect) => {
self = this
if (eDetect.data.error) {
self.detecting = false
self.resultData = {}
f7.dialog.alert(`ALVINN structure finding error: ${eDetect.data.message}`)
} else if (eDetect.data.success == 'detection') {
self.detecting = false
self.resultData = eDetect.data.detections
if (self.resultData) {
self.resultData.detections.map(d => {d.label = self.detectorLabels[d.label].name})
}
f7.utils.nextFrame(() => {
this.selectChip("redraw")
})
self.uploadDirty = true
} else if (eDetect.data.success == 'model') {
this.reloadModel = false
loadSuccess(true)
}
}
let loadSuccess = null
let loadFailure = null
let modelReloading = null
if (!this.useWorkers && reloadModel) {
await this.loadModel(modelLocation)
reloadModel = false
} else {
modelReloading = new Promise((res, rej) => {
loadSuccess = res
loadFailure = rej
if (reloadModel) {
detectWorker.postMessage({call: 'loadModel', weights: modelLocation})
} else {
loadSuccess()
}
})
}
if (serverSettings && serverSettings.use) {
this.remoteDetect()
} else if (this.useWorkers) {
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
})
} else {
createImageBitmap(this.imageView).then(res => {
return this.localDetect(res)
}).then(dets => {
this.detecting = false
this.resultData = dets
this.uploadDirty = true
}).catch((e) => {
console.log(e.message)
this.detecting = false
this.resultData = {}
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
})
}
f7.utils.nextFrame(() => {
this.selectChip("redraw")
let modelReloading = new Promise((res, rej) => {
loadSuccess = res
loadFailure = rej
if (this.reloadModel) {
detectWorker.port.postMessage({call: 'loadModel', weights: this.modelLocation})
} else {
loadSuccess(true)
}
})
if (this.serverSettings && this.serverSettings.use) {
this.remoteDetect()
} else {
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
detectWorker.port.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
})
}
},
selectAll (ev) {
if (ev.target.checked) {
@@ -406,27 +340,24 @@
}
},
async selectImage (mode) {
imageLoadMode = mode
this.imageLoadMode = mode
if (this.isCordova && mode == "camera") {
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
return
}
if (mode == "camera" && !otherSettings.disableVideo) {
if (mode == "camera") {
this.videoAvailable = await this.openCamera(this.$refs.image_container)
if (this.videoAvailable) {
this.selectedChip = -1
this.imageLoaded = false
this.imageView.src = null
this.$refs.image_cvs.style['background-image'] = 'none'
this.resultData = {}
const trackDetails = this.cameraStream.getVideoTracks()[0].getSettings()
let vidElement = this.$refs.vid_viewer
var trackDetails = this.cameraStream.getVideoTracks()[0].getSettings()
var vidElement = this.$refs.vid_viewer
vidElement.width = trackDetails.width
vidElement.height = trackDetails.height
if (!this.useWorkers) {
this.videoFrameDetect(vidElement, miniLocation)
} else {
this.videoFrameDetectWorker(vidElement, vidWorker)
if (!this.otherSettings.disableVideo) {
this.videoFrameDetect(vidElement)
}
return
}
@@ -444,62 +375,36 @@
}).open()
return
}
if (mode == 'clipboard') {
navigator.clipboard.read().then(clip => {
if (!clip[0].types.includes("image/png")) {
throw new Error("Clipboard does not contain valid image data.");
}
return clip[0].getType("image/png");
}).then(blob => {
let clipImage = URL.createObjectURL(blob);
this.getImage(clipImage)
}).catch(e => {
console.log(e)
f7.dialog.alert(`Error pasting image: ${e.message}`)
})
return
}
this.$refs.image_chooser.click()
},
onFail (message) {
alert(`Camera fail: ${message}`)
},
selectChip ( iChip ) {
const [imCanvas, imageCtx] = this.resetView()
if (this.selectedChip == iChip) {
this.selectedChip = -1
this.resetView()
return
}
if (iChip == 'redraw') {
if (this.selectedChip == -1) {
this.resetView()
return
}
if (this.selectedChip == -1) return
iChip = this.selectedChip
}
const [imCanvas, imageCtx] = this.resetView(true)
let structBox, cvsBox, screenBox
[structBox, cvsBox, screenBox] = this.resultData.detections[iChip].box.getBoxes('side', this.imageView, imCanvas, {zoom: this.canvasZoom, offset: {...this.canvasOffset}})
this.infoLinkPos.x = Math.min(Math.max(screenBox.left, 0),imCanvas.width)
this.infoLinkPos.y = Math.min(Math.max(screenBox.top, 0), imCanvas.height)
const boxCoords = this.box2cvs(this.resultData.detections[iChip])[0]
const imageScale = Math.max(this.imageView.width / imCanvas.width, this.imageView.height / imCanvas.height)
imageCtx.drawImage(this.imageView, structBox.left, structBox.top, structBox.width, structBox.height, cvsBox.left, cvsBox.top, cvsBox.width, cvsBox.height)
imageCtx.save()
imageCtx.arc(cvsBox.left, cvsBox.top, 14 / this.canvasZoom, 0, 2 * Math.PI)
imageCtx.closePath()
imageCtx.clip()
imageCtx.drawImage(this.imageView,
structBox.left - (14 / this.canvasZoom * imageScale),
structBox.top - (14 / this.canvasZoom * imageScale),
(28 / this.canvasZoom * imageScale),
(28 / this.canvasZoom * imageScale),
cvsBox.left - (14 / this.canvasZoom),
cvsBox.top - (14 / this.canvasZoom),
(28 / this.canvasZoom), (28 / this.canvasZoom))
imageCtx.restore()
let boxLeft = boxCoords.cvsLeft
let boxTop = boxCoords.cvsTop
let boxWidth = boxCoords.cvsRight - boxCoords.cvsLeft
let boxHeight = boxCoords.cvsBottom - boxCoords.cvsTop
this.infoLinkPos.x = boxCoords.cvsLeft
this.infoLinkPos.y = boxCoords.cvsTop
let boxMin = Math.min(boxHeight, boxWidth)
this.infoLinkPos.adj = (boxMin >= 50) ? 0 : Math.min(10, 50 - boxMin)
imageCtx.strokeRect(boxLeft, boxTop, boxWidth, boxHeight)
this.selectedChip = iChip
this.resultData.detections[iChip].beenViewed = true
@@ -515,24 +420,15 @@
this.uploadDirty = true
});
},
resetView (drawChip) {
resetView () {
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
imageCtx.translate(this.canvasOffset.x,this.canvasOffset.y)
imageCtx.scale(this.canvasZoom,this.canvasZoom)
imageCtx.globalAlpha = 1
imageCtx.strokeStyle = 'yellow'
imageCtx.lineWidth = 3 / this.canvasZoom
if (this.imageLoaded) {
const imageLoc = imageLocation.getBoxes('side', this.imageView, imCanvas)
if (drawChip) {imageCtx.globalAlpha = .5}
imageCtx.drawImage(this.imageView, 0, 0, this.imageView.width, this.imageView.height, imageLoc[1].left, imageLoc[1].top, imageLoc[1].width, imageLoc[1].height)
if (drawChip) {imageCtx.globalAlpha = 1}
}
this.structureZoomed = false
imageCtx.lineWidth = 3
return [imCanvas, imageCtx]
},
getImage (searchImage) {
@@ -540,22 +436,18 @@
if (this.videoAvailable) {
this.closeCamera()
this.detecting = true
reloadModel = true
this.reloadModel = true
resolve(searchImage)
} else if (this.isCordova && imageLoadMode == "camera") {
} else if (this.isCordova && this.imageLoadMode == "camera") {
this.detecting = true
resolve('data:image/jpg;base64,' + searchImage)
}
if (imageLoadMode == 'clipboard') {
this.detecting = true
resolve(searchImage)
}
const reader = new FileReader()
reader.addEventListener("load", () => {
this.detecting = true
resolve(reader.result)
},{once: true})
if (imageLoadMode == 'sample') {
if (this.imageLoadMode == 'sample') {
fetch(`${this.isCordova ? 'https://localhost' : '.'}/samples/${this.detectorName}-${searchImage}.jpeg`).then( resp => {
return resp.blob()
}).then(respBlob => {
@@ -577,24 +469,22 @@
this.imageView.src = imgData
return(this.imageView.decode())
}).then( () => {
this.canvasOffset = {x: 0, y: 0}
this.canvasZoom = 1
const imCanvas = this.$refs.image_cvs
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
const imageCtx = imCanvas.getContext("2d")
const imageLoc = imageLocation.getBoxes('side', this.imageView, imCanvas)
imageCtx.drawImage(this.imageView, 0, 0, this.imageView.width, this.imageView.height, imageLoc[1].left, imageLoc[1].top, imageLoc[1].width, imageLoc[1].height)
f7.utils.nextFrame(() => {
const [imCanvas, _] = this.resetView()
imCanvas.style['background-image'] = `url(${this.imageView.src})`
/******
* setTimeout is not a good solution, but it's the only way
* I can find to not cut off drawing of the canvas background
******/
// setTimeout(() => {
this.setData()
})
// }, 1)
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`Error loading image: ${e.message}`)
})
},
async submitData () {
let uploadData = this.showResults
var uploadData = this.showResults
.filter( d => { return d.aboveThreshold && d.isSearched && !d.isDeleted })
.map( r => { return {"top": r.top, "left": r.left, "bottom": r.bottom, "right": r.right, "label": r.label}})
this.uploadUid = await this.uploadData(this.imageView.src.split(',')[1],uploadData,this.uploadUid)
@@ -604,85 +494,42 @@
this.detectorLevel = value
},
structureClick(e) {
let self = this
function loopIndex(i) {
if (self.selectedChip == -1) return i
let li = i + self.selectedChip
if (li >= numBoxes) li -= numBoxes
return li
}
let boxCoords = []
this.resultData.detections.forEach(d => {
let cvsBox = d.box.getBoxes('point',this.imageView,this.$refs.image_cvs)[1]
cvsBox.clickable = d.aboveThreshold && d.isSearched && !d.isDeleted
boxCoords.push(cvsBox)
const boxCoords = this.box2cvs(this.showResults)
var findBox = boxCoords.findIndex( (r, i) => { return r.cvsLeft <= e.offsetX &&
r.cvsRight >= e.offsetX &&
r.cvsTop <= e.offsetY &&
r.cvsBottom >= e.offsetY &&
this.resultData.detections[i].resultIndex > this.selectedChip &&
this.resultData.detections[i].aboveThreshold &&
this.resultData.detections[i].isSearched &&
!this.resultData.detections[i].isDeleted
})
const numBoxes = boxCoords.length
let clickX = (e.offsetX - this.canvasOffset.x) / this.canvasZoom
let clickY = (e.offsetY - this.canvasOffset.y) / this.canvasZoom
let boxEnd = boxCoords.splice(0, this.selectedChip)
boxCoords = boxCoords.concat(boxEnd)
const findBox = boxCoords.findIndex( (r, i) => {
let di = loopIndex(i)
if (di == this.selectedChip ) return false
return r.clickable &&
r.left <= clickX &&
r.right >= clickX &&
r.top <= clickY &&
r.bottom >= clickY
})
this.selectChip(findBox >= 0 ? this.resultData.detections[loopIndex(findBox)].resultIndex : this.selectedChip)
this.selectChip(findBox >= 0 ? this.resultData.detections[findBox].resultIndex : this.selectedChip)
},
toggleSettings() {
this.showDetectSettings = !this.showDetectSettings
f7.utils.nextFrame(() => {
this.selectChip("redraw")
})
},
startMove() {
canvasMoving = true
},
endMove() {
canvasMoving = false
},
makeMove(event) {
if (canvasMoving) {
this.canvasOffset.x += event.movementX
this.canvasOffset.y += event.movementY
this.selectChip("redraw")
box2cvs(boxInput) {
if (!boxInput || boxInput.length == 0) return []
const boxList = boxInput.length ? boxInput : [boxInput]
const [imCanvas, imageCtx] = this.resetView()
var imgWidth
var imgHeight
const imgAspect = this.imageView.width / this.imageView.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
},
spinWheel(event) {
let zoomFactor
if (event.wheelDelta > 0) {
zoomFactor = 1.05
} else if (event.wheelDelta < 0) {
zoomFactor = 1 / 1.05
}
this.canvasZoom *= zoomFactor
this.canvasOffset.x = event.offsetX * (1 - zoomFactor) + this.canvasOffset.x * zoomFactor
this.canvasOffset.y = event.offsetY * (1 - zoomFactor) + this.canvasOffset.y * zoomFactor
this.selectChip("redraw")
},
resetZoom() {
this.canvasZoom = 1
this.canvasOffset.x = 0
this.canvasOffset.y = 0
this.selectChip("redraw")
},
zoomToSelected() {
const imCanvas = this.$refs.image_cvs
const boxCoords = this.resultData.detections[this.selectedChip].box.getBoxes('point', this.imageView, imCanvas)
const boxWidth = boxCoords[1].right - boxCoords[1].left
const boxHeight = boxCoords[1].bottom - boxCoords[1].top
const boxMidX = (boxCoords[1].right + boxCoords[1].left ) / 2
const boxMidY = (boxCoords[1].bottom + boxCoords[1].top ) / 2
const zoomFactor = Math.min(imCanvas.width / boxWidth * .9, imCanvas.height / boxHeight * .9, 8)
this.canvasZoom = zoomFactor
this.canvasOffset.x = -(boxMidX * zoomFactor) + imCanvas.width / 2
this.canvasOffset.y = -(boxMidY * zoomFactor) + imCanvas.height / 2
this.selectChip("redraw")
this.structureZoomed = true
const cvsCoords = boxList.map( (d, i) => {
return {
"cvsLeft": (imCanvas.width - imgWidth) / 2 + d.left * imgWidth,
"cvsRight": (imCanvas.width - imgWidth) / 2 + d.right * imgWidth,
"cvsTop": (imCanvas.height - imgHeight) / 2 + d.top * imgHeight,
"cvsBottom": (imCanvas.height - imgHeight) / 2 + d.bottom * imgHeight
}
})
return cvsCoords
}
}
}

View File

@@ -1,118 +1,11 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue'
let model = null
export default {
methods: {
async loadModel(weights, preload) {
if (model && model.modelURL == weights) {
return model
} else if (model) {
tf.dispose(model)
}
model = await tf.loadGraphModel(weights)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
/*****************
* If preloading then run model
* once on fake data to preload
* weights for a faster response
*****************/
if (preload) {
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
model.predict(dummyT)
}
return model
},
async localDetect(imageData) {
console.time('mx: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('mx: pre-process')
console.time('mx: run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('mx: run prediction')
console.time('mx: post-process')
const outputSize = res.shape[1]
let rawBoxes = []
let rawScores = []
for (let i = 0; i < rawRes.length; i++) {
const getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
const getBox = rawRes[i].slice(0,4)
const boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
(getBox[1] + (getBox[3] / 2)) / modelHeight,
]
rawBoxes.push(boxCalc)
rawScores.push(getScores)
}
if (rawBoxes.length > 0) {
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let resBoxes = null
let validBoxes = []
let structureScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (let c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = resBoxes.dataSync()
tf.dispose(resBoxes)
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
let outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
validBoxes = []
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
const valid_detections_data = classes_data.length
const output = {
detections: []
}
for (let i =0; i < valid_detections_data; i++) {
const [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
"label": this.detectorLabels[classes_data[i]].name,
"confidence": scores_data[i] * 100
})
}
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('mx: post-process')
return output || { detections: [] }
},
getRemoteLabels() {
let self = this
const modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
let xhr = new XMLHttpRequest()
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
var xhr = new XMLHttpRequest()
xhr.open("GET", modelURL)
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.timeout = 10000
@@ -124,8 +17,8 @@ export default {
f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`)
return
}
const detectors = JSON.parse(xhr.response).detectors
let findLabel = detectors
var detectors = JSON.parse(xhr.response).detectors
var findLabel = detectors
.find( d => { return d.name == self.detectorName } )?.labels
.filter( l => { return l != "" } ).sort()
.map( l => { return {'name': l, 'detect': true} } )
@@ -139,9 +32,9 @@ export default {
xhr.send()
},
remoteDetect() {
let self = this
const modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect`
let xhr = new XMLHttpRequest()
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect`
var xhr = new XMLHttpRequest()
xhr.open("POST", modelURL)
xhr.timeout = 10000
xhr.ontimeout = this.remoteTimeout
@@ -158,7 +51,7 @@ export default {
self.uploadDirty = true
}
const doodsData = {
var doodsData = {
"detector_name": this.detectorName,
"detect": {
"*": 1
@@ -172,64 +65,5 @@ export default {
this.detecting = false
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
},
async videoFrameDetect (vidData, miniModel) {
await this.loadModel(miniModel)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
const target = this.$refs.target_image
await tf.nextFrame();
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
let imgWidth, imgHeight
const imgAspect = vidData.width / vidData.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
while (this.videoAvailable) {
console.time('mx: frame-process')
try {
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
const res = model.predict(input)
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
let rawCoords = []
if (rawRes) {
for (let i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
foundTarget.push(Math.max(...getScores))
rawCoords.push(foundTarget)
}
}
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (let coord of rawCoords) {
console.log(`x: ${coord[0]}, y: ${coord[1]}`)
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / modelWidth) * imgWidth -5
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / modelHeight) * imgHeight -5
imageCtx.globalAlpha = coord[2]
imageCtx.drawImage(target, pointX, pointY, 20, 20)
}
}
tf.dispose(input)
tf.dispose(res)
tf.dispose(rawRes)
} catch (e) {
console.log(e)
}
console.timeEnd('mx: frame-process')
await tf.nextFrame();
}
}
}
}

View File

@@ -21,7 +21,6 @@
</ul>
</li>
<li>Click on the image file icon <SvgIcon icon="photo_library" class="list-svg"/> to load a picture from the device storage.</li>
<li>If the clipboard is available on the system, then there will be a paste icon <SvgIcon icon="clipboard" class="list-svg"/> to paste image data directly into the app.</li>
<li>If demo mode is turned on, you can click on the marked image icon <SvgIcon icon="photo_sample" class="list-svg"/> to load an ALVINN sample image.</li>
</ul>
</li>
@@ -31,11 +30,8 @@
<li>Click on each tag to see the structure highlighted in the image or click on the image to see the tag for that structure (additional clicks to the same area will select overlapping structres).</li>
<li>Tag color and proportion filled indicate ALVINN's level of confidence in the identification.</li>
<li>An incorrect tag can be deleted by clicking on the tag's <f7-icon icon="chip-delete" style="margin-right: 1px;"></f7-icon> button.</li>
<li>Click on the zoom to structure button <SvgIcon icon="zoom_to" class="list-svg"/> to magnify the view of the selected structure</li>
</ul>
</li>
<li>Pan (middle click or touch and drag) and zoom (mouse wheel or pinch) to manually select detailed views in the image.</li>
<li>The reset zoom button <SvgIcon icon="reset_zoom" class="list-svg"/> will return the image to its initial position and magnification.</li>
</ol>
<h2>Advanced Features</h2>
<h3>Detection Parameters</h3>

View File

@@ -97,7 +97,8 @@
</style>
<script>
import RegionIcon from '../components/region-icon.vue'
import { touchstart } from 'dom7'
import RegionIcon from '../components/region-icon.vue'
import store from '../js/store'
import { f7 } from 'framework7-vue'
@@ -112,11 +113,6 @@
}
},
setup() {
//URL TESTING CODE
//let testUrl = URL.parse(`../models/thorax/model.json`,import.meta.url).href
//console.log(testUrl)
//let testUrl2 = new URL(`../models/thorax/model.json`,import.meta.url)
//console.log(testUrl2)
return store()
},
methods: {

View File

@@ -91,7 +91,7 @@
computed: {
otherIp () {
let filteredIps = {}
for (let oldIp in this.serverSettings.previous) {
for (var oldIp in this.serverSettings.previous) {
if (oldIp != this.serverSettings.address) {
filteredIps[oldIp] = this.serverSettings.previous[oldIp]
}
@@ -109,12 +109,12 @@
}
},
created () {
const loadServerSettings = localStorage.getItem('serverSettings')
var loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings)
if (!this.serverSettings.previous) this.serverSettings.previous = {}
const loadThemeSettings = localStorage.getItem('themeSettings')
var loadThemeSettings = localStorage.getItem('themeSettings')
if (loadThemeSettings) this.themeSettings = JSON.parse(loadThemeSettings)
const loadOtherSettings = localStorage.getItem('otherSettings')
var loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
},
methods: {
@@ -136,7 +136,7 @@
)
saveSetting.then(
() => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'Settings saved',
closeTimeout: 2000
})
@@ -144,7 +144,7 @@
this.isDirty = false;
},
() => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'ERROR: No settings saved',
closeTimeout: 2000
})

View File

@@ -8,8 +8,6 @@
<f7-block-title medium>Details</f7-block-title>
<f7-list>
<f7-list-item title="Version" :after="alvinnVersion"></f7-list-item>
<f7-list-item title="Build" :after="alvinnBuild"></f7-list-item>
<f7-list-item title="Workers" :after="useWorkers ? 'Enabled' : 'Disabled'"></f7-list-item>
</f7-list>
<f7-block-title medium>Models</f7-block-title>
<f7-list style="width: 100%;">
@@ -53,9 +51,7 @@
headneckDetails: {},
miniHeadneckDetails: {},
alvinnVersion: store().getVersion,
alvinnBuild: store().getBuild,
isCordova: !!window.cordova,
useWorkers: store().useWorkers,
otherSettings: {}
}
},
@@ -63,7 +59,7 @@
return store()
},
created () {
const loadOtherSettings = localStorage.getItem('otherSettings')
var loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/thorax/descript.json`)
.then((mod) => { return mod.json() })

View File

@@ -5,8 +5,8 @@ export default {
newUid (length) {
const uidLength = length || 16
const uidChars = 'abcdefghijklmnopqrstuvwxyz0123456789'
let uid = []
for (let i = 0; i < uidLength; i++) {
var uid = []
for (var i = 0; i < uidLength; i++) {
uid.push(uidChars.charAt(Math.floor(Math.random() * ((i < 4) ? 26 : 36))))
}
return uid.join('')
@@ -14,23 +14,24 @@ export default {
uploadData (imagePayload, classPayload, prevUid) {
let uploadImage = new Promise (resolve => {
const dataUid = prevUid || this.newUid(16)
let byteChars = window.atob(imagePayload)
let byteArrays = []
var byteChars = window.atob(imagePayload)
var byteArrays = []
var len = byteChars.length
for (let offset = 0; offset < byteChars.length; offset += 1024) {
let slice = byteChars.slice(offset, offset + 1024)
let byteNumbers = new Array(slice.length)
for (let i = 0; i < slice.length; i++) {
for (var offset = 0; offset < len; offset += 1024) {
var slice = byteChars.slice(offset, offset + 1024)
var byteNumbers = new Array(slice.length)
for (var i = 0; i < slice.length; i++) {
byteNumbers[i] = slice.charCodeAt(i)
}
let byteArray = new Uint8Array(byteNumbers)
var byteArray = new Uint8Array(byteNumbers)
byteArrays.push(byteArray)
}
const imageBlob = new Blob(byteArrays, {type: 'image/jpeg'})
var imageBlob = new Blob(byteArrays, {type: 'image/jpeg'})
let xhrJpg = new XMLHttpRequest()
let uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.jpeg`
var xhrJpg = new XMLHttpRequest()
var uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.jpeg`
xhrJpg.open("PUT", uploadUrl)
xhrJpg.setRequestHeader('Content-Type', 'image/jpeg')
xhrJpg.setRequestHeader('X-Method-Override', 'PUT')
@@ -38,8 +39,8 @@ export default {
xhrJpg.setRequestHeader("Authorization", "Basic " + btoa("LKBm3H6JdSaywyg:"))
xhrJpg.send(imageBlob)
let xhrTxt = new XMLHttpRequest()
uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.txt`
var xhrTxt = new XMLHttpRequest()
var uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.txt`
xhrTxt.open("PUT", uploadUrl)
xhrTxt.setRequestHeader('Content-Type', 'text/plain')
xhrTxt.setRequestHeader('X-Method-Override', 'PUT')
@@ -50,7 +51,7 @@ export default {
resolve(dataUid)
})
return uploadImage.then((newUid) => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'Detections Uploaded: thank you.',
closeTimeout: 2000
})

View File

@@ -1,51 +0,0 @@
export default {
data () {
return {
touchPrevious: {}
}
},
methods: {
startTouch(event) {
if (event.touches.length == 1) {
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
}
if (event.touches.length == 2) {
let midX = (event.touches.item(0).clientX + event.touches.item(1).clientX) / 2
let midY = (event.touches.item(0).clientY + event.touches.item(1).clientY) / 2
this.touchPrevious = {distance: this.touchDistance(event.touches), x: midX, y: midY}
}
},
endTouch(event) {
if (event.touches.length == 1) {
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
} else {
//this.debugInfo = null
}
},
moveTouch(event) {
switch (event.touches.length) {
case 1:
this.canvasOffset.x += event.touches[0].clientX - this.touchPrevious.x
this.canvasOffset.y += event.touches[0].clientY - this.touchPrevious.y
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
break;
case 2:
let newDistance = this.touchDistance(event.touches)
let midX = (event.touches.item(0).clientX + event.touches.item(1).clientX) / 2
let midY = (event.touches.item(0).clientY + event.touches.item(1).clientY) / 2
let zoomFactor = newDistance / this.touchPrevious.distance
this.canvasZoom *= zoomFactor
this.canvasOffset.x = (midX - 16) * (1 - zoomFactor) + this.canvasOffset.x * zoomFactor + (midX - this.touchPrevious.x)
this.canvasOffset.y = (midY - 96) * (1 - zoomFactor) + this.canvasOffset.y * zoomFactor + (midY - this.touchPrevious.y)
this.touchPrevious = {distance: newDistance, x: midX, y: midY}
break;
}
this.selectChip("redraw")
},
touchDistance(touches) {
let touch1 = touches.item(0)
let touch2 = touches.item(1)
return Math.sqrt((touch1.clientX - touch2.clientX) ** 2 + (touch1.clientY - touch2.clientY) ** 2)
}
}
}