2 Commits

Author SHA1 Message Date
b6a214ca07 Add yaml format config file
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-03-29 21:49:05 -07:00
8520cdb93f Add site config to store
Signed-off-by: Justin Georgi <justin.georgi@gmail.com>
2024-03-29 21:49:05 -07:00
99 changed files with 683 additions and 1706 deletions

View File

@@ -1,34 +0,0 @@
name: Build Dev PWA
run-name: ${{ gitea.actor }} is building new dev pwa version
on:
push:
branches:
- main
jobs:
Build-PWA:
runs-on: ubuntu-22.04
steps:
- name: Check out repository code
uses: actions/checkout@v4
- name: Install node modules
run: npm install
- name: Add build number
run: sed -i 's/####/#${{ github.run_number }}/' ./src/js/store.js
- name: Build pwa
run: npm run build
- name: Replace previous dev pwa
env:
DEV_HOST: ${{ secrets.DEV_HOST }}
DEV_KEY: ${{ secrets.DEV_KEY }}
DEV_FP: ${{ secrets.DEV_FINGERPRINT }}
run: |
echo "$DEV_KEY" > ~/.ssh/id_rsa
chmod 600 ~/.ssh/id_rsa
echo "$DEV_FP" > ~/.ssh/known_hosts
chmod 600 ~/.ssh/known_hosts
ssh root@$DEV_HOST "rm -R /var/www/html/alvinn-dev/*"
echo "Old files removed"
scp -r ${{ gitea.workspace }}/www/* root@$DEV_HOST:/var/www/html/alvinn-dev
ssh root@$DEV_HOST "chown -R www-data:www-data /var/www/html/alvinn-dev/*"
echo "New files copied"

5
.gitignore vendored
View File

@@ -40,8 +40,7 @@ cordova/platforms/
cordova/plugins/
cordova/www/
# Production build
www/
# VSCode settings
.vscode/settings.json

View File

@@ -1,6 +1,6 @@
# ALVINN
Anatomy Lab Visual Identification Neural Net (A.L.V.I.N.N.) is a f7 based app for using a computer vision neural net model to identify anatomical structures in photographic imagery.
Anatomy Lab Visual Identification Neural Net (A.L.V.I.N.N) is a f7 based app for using a computer vision neural net model to identify anatomical structures in photographic imagery.
## Install
* **Android:** Download the latest Android apk in [packages](https://gitea.azgeorgis.net/Georgi_Lab/ALVINN_f7/packages) and open the downloaded file to install.
@@ -9,26 +9,16 @@ Anatomy Lab Visual Identification Neural Net (A.L.V.I.N.N.) is a f7 based app fo
* **Run from source:** Clone this repository and in the root directory run `npm install` followed by `npm start`. For more information see [f7 info](f7_info.md).
## Quick Start
1. Select the region of the body you want to identify structures from. The regions are:
* Thorax and back
* Abdomen and pelvis
* Limbs
* Head and neck
1. Load an image in one of the following ways:
* Click on the camera icon to take a new picture.
* ALVINN will highlight areas with potential structures as you aim the camera.
* Press Capture to use the current camera view.
* Click on the image file icon to load a picture from the device storage.
* If demo mode is turned on, you can click on the marked image icon to load an ALVINN sample image.
1. When the picture is captured or loaded, any identifiable structures will be listed as tags below the image:
* Click on each tag to see the structure highlighted in the image or click on the image to see the tag for that structure (additional clicks to the same area will select overlapping structres).
* Tag color and proportion filled indicate ALVINN's level of confidence in the identification.
* An incorrect tag can be deleted by clicking on the tag's X button.
1. From the main screen of the app, select the menu icon in the upper left corner and go to `Settings`.
1. Make sure that `Use external server` option is selected and fill in address and port parameters to connect to a back end serving the ALVINN models (Doods2 is the default backend).
1. Save the settings and return to the main screen.
1. Select the region of the body you want to identify structures from.
1. In the region page, click on the camera icon to take a new picture or load a picture from storage. When the picture load, any identifiable structures will be listed as tags below the image.
1. Click on each tag to see the structure highlighted in the image.
## Advanced Features
### Detection Parameters
If there are potential structures that do not satisfy the current detection settings, a badge on the detection menu icon will indicate the number of un-displayed structures.
Clicking on the detection menu icon will open a menu of tools to adjust the detection settings.
After an image has been loaded and structure detection has been performed, the detection parameters can be adjusted using the third detection menu button (eye).
This button will make three tools available:
1. Confidence slider: You can use the slider to change the confidence threshold for identifying structures.
The default threshold is 50% confidence.
@@ -38,36 +28,4 @@ The default threshold is 50% confidence.
### Submitting Images
If all of the detection tags that are currently visible have been viewed, then the final button (cloud upload) on the detection menu will be enabled.
This button will cause the image and the verified structures to be uploaded to the ALVINN project servers where that data will be available for further training of the neural net.
If after the image has been uploaded, the available detection tags change, then the option to re-upload the image will be available if all the new tags have been viewed and verified.
## Configuration
Configuring aspects of the hosted ALVINN PWA is done through the `conf.yaml` file in the `conf` folder.
### Site settings
The following site settings are avaible:
| name | description | values | default |
| --- | --- | --- | --- |
| `agreeExpire` | number of months before users are shown the site agreement dialog again<br />set to 0 to display dialog on every reload | integer >= 0 | 3 |
| `demo` | set to **true** to enable demo mode by default | boolean | false |
| `regions` | array of regions names to enable | thorax, abdomen, limbs, head | [thorax, abdomen, limbs, head] |
| `useExternal` | detemines the ability to use an external detection server:<br />**none** - external server cannot be configured<br />**optional** - external server can be configured in the app's settings page<br />**list** - external server can be selected in the app's settings page but only the configured server(s) may be selected<br />**required** - external server settings from conf file will be used by default and disable server options in the settings page | none, optional, list, required | **optional** |
| `disableWorkers` | force app to use a single thread for detection computations instead of multi threading web workers | boolean | **optional** |
| `external` | properties of the external server(s) ALVINN may connect to<br />This setting must be a single element array if **useExternal** is set to **required**.<br />This setting must be an array of one or more elements if **useExternal** is set to **list** | external server settings array | []|
| `infoUrl` | root url for links to information about identified structures<br />Structure labels with spaces replaced by underscores will be appended to this value for full information links (*e.g.,* Abdominal_diapragm) | string | info link not shown |
### External server settings
ALVINN can use an external object detection server instead of the built in models; settings for that external server are configured here. These settings must be configured if **site - useExternal** is set to **list** or **required**.
| name | description | default |
| --- | --- | --- |
| `name` | identifier for external server | *none* |
| `address` | ip or url of external server | *none* |
| `port` | port to access on external server | 9001 |
The external server's response must be json with a `detections` key that contains an array of the detected structure labels, bounding box data, and confidence values.
```
{
"detections": [
{"top": 0.1, "left": 0.1, "bottom": 0.9, "right": 0.9, "label": "Aorta", "confidence": 90.0 }
...
],
}
```
If after the image has been uploaded, the available detection tags change, then the option to re-upload the image will be available if all the new tags have been viewed and verified.

View File

@@ -1,5 +1,5 @@
<?xml version='1.0' encoding='utf-8'?>
<widget id="edu.midwestern.alvinn" version="0.5.0-alpha" xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0" xmlns:android="http://schemas.android.com/apk/res/android">
<widget id="edu.midwestern.alvinn" version="0.5.0-rc" xmlns="http://www.w3.org/ns/widgets" xmlns:cdv="http://cordova.apache.org/ns/1.0" xmlns:android="http://schemas.android.com/apk/res/android">
<name>ALVINN</name>
<description>Anatomy Lab Visual Identification Neural Network.</description>
<author email="jgeorg@midwestern.edu" href="https://midwestern.edu">

View File

@@ -1,7 +1,7 @@
{
"name": "edu.midwestern.alvinn",
"displayName": "ALVINN",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"description": "Anatomy Lab Visual Identification Neural Network.",
"main": "index.js",
"scripts": {

173
package-lock.json generated
View File

@@ -1,16 +1,16 @@
{
"name": "alvinn",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"lockfileVersion": 2,
"requires": true,
"packages": {
"": {
"name": "alvinn",
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"hasInstallScript": true,
"license": "UNLICENSED",
"dependencies": {
"@tensorflow/tfjs": "^4.21.0",
"@tensorflow/tfjs": "^4.17.0",
"dom7": "^4.0.6",
"framework7": "^8.3.0",
"framework7-icons": "^5.0.5",
@@ -3354,17 +3354,16 @@
}
},
"node_modules/@tensorflow/tfjs": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.21.0.tgz",
"integrity": "sha512-7D/+H150ptvt+POMbsME3WlIvLiuBR2rCC2Z0hOKKb/5Ygkj7xsp/K2HzOvUj0g0yjk+utkU45QEYhnhjnbHRA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.17.0.tgz",
"integrity": "sha512-yXRBhpM3frlNA/YaPp6HNk9EfIi8han5RYeQA3R8OCa0Od+AfoG1PUmlxV8fE2wCorlGVyHsgpiJ6M9YZPB56w==",
"dependencies": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-webgl": "4.21.0",
"@tensorflow/tfjs-converter": "4.21.0",
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-data": "4.21.0",
"@tensorflow/tfjs-layers": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@tensorflow/tfjs-backend-webgl": "4.17.0",
"@tensorflow/tfjs-converter": "4.17.0",
"@tensorflow/tfjs-core": "4.17.0",
"@tensorflow/tfjs-data": "4.17.0",
"@tensorflow/tfjs-layers": "4.17.0",
"argparse": "^1.0.10",
"chalk": "^4.1.0",
"core-js": "3.29.1",
@@ -3376,10 +3375,9 @@
}
},
"node_modules/@tensorflow/tfjs-backend-cpu": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.21.0.tgz",
"integrity": "sha512-yS9Oisg4L48N7ML6677ilv1eP5Jt59S74skSU1cCsM4yBAtH4DAn9b89/JtqBISh6JadanfX26b4HCWQvMvqFg==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.17.0.tgz",
"integrity": "sha512-2VSCHnX9qhYTjw9HiVwTBSnRVlntKXeBlK7aSVsmZfHGwWE2faErTtO7bWmqNqw0U7gyznJbVAjlow/p+0RNGw==",
"dependencies": {
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
@@ -3388,16 +3386,15 @@
"yarn": ">= 1.3.2"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-backend-webgl": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.21.0.tgz",
"integrity": "sha512-7k6mb7dd0uF9jI51iunF3rhEXjvR/a613kjWZ0Rj3o1COFrneyku2C7cRMZERWPhbgXZ+dF+j9MdpGIpgtShIQ==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.17.0.tgz",
"integrity": "sha512-CC5GsGECCd7eYAUaKq0XJ48FjEZdgXZWPxgUYx4djvfUx5fQPp35hCSP9w/k463jllBMbjl2tKRg8u7Ia/LYzg==",
"dependencies": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@types/offscreencanvas": "~2019.3.0",
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
@@ -3406,23 +3403,21 @@
"yarn": ">= 1.3.2"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-converter": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.21.0.tgz",
"integrity": "sha512-cUhU+F1lGx2qnKk/gRy8odBh0PZlFz0Dl71TG8LVnj0/g352DqiNrKXlKO/po9aWzP8x0KUGC3gNMSMJW+T0DA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.17.0.tgz",
"integrity": "sha512-qFxIjPfomCuTrYxsFjtKbi3QfdmTTCWo+RvqD64oCMS0sjp7sUDNhJyKDoLx6LZhXlwXpHIVDJctLMRMwet0Zw==",
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs-core": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.21.0.tgz",
"integrity": "sha512-ZbECwXps5wb9XXcGq4ZXvZDVjr5okc3I0+i/vU6bpQ+nVApyIrMiyEudP8f6vracVTvNmnlN62vUXoEsQb2F8g==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.17.0.tgz",
"integrity": "sha512-v9Q5430EnRpyhWNd9LVgXadciKvxLiq+sTrLKRowh26BHyAsams4tZIgX3lFKjB7b90p+FYifVMcqLTTHgjGpQ==",
"dependencies": {
"@types/long": "^4.0.1",
"@types/offscreencanvas": "~2019.7.0",
@@ -3439,31 +3434,28 @@
"node_modules/@tensorflow/tfjs-core/node_modules/@types/offscreencanvas": {
"version": "2019.7.3",
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.7.3.tgz",
"integrity": "sha512-ieXiYmgSRXUDeOntE1InxjWyvEelZGP63M+cGuquuRLuIKKT1osnkXjxev9B7d1nXSug5vpunx+gNlbVxMlC9A==",
"license": "MIT"
"integrity": "sha512-ieXiYmgSRXUDeOntE1InxjWyvEelZGP63M+cGuquuRLuIKKT1osnkXjxev9B7d1nXSug5vpunx+gNlbVxMlC9A=="
},
"node_modules/@tensorflow/tfjs-data": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.21.0.tgz",
"integrity": "sha512-LpJ/vyQMwYHkcVCqIRg7IVVw13VBY7rNAiuhmKP9S5NP/2ye4KA8BJ4XwDIDgjCVQM7glK9L8bMav++xCDf7xA==",
"license": "Apache-2.0",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.17.0.tgz",
"integrity": "sha512-aPKrDFip+gXicWOFALeNT7KKQjRXFkHd/hNe/zs4mCFcIN00hy1PkZ6xkYsgrsdLDQMBSGeS4B4ZM0k5Cs88QA==",
"dependencies": {
"@types/node-fetch": "^2.1.2",
"node-fetch": "~2.6.1",
"string_decoder": "^1.3.0"
},
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-core": "4.17.0",
"seedrandom": "^3.0.5"
}
},
"node_modules/@tensorflow/tfjs-layers": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.21.0.tgz",
"integrity": "sha512-a8KaMYlY3+llvE9079nvASKpaaf8xpCMdOjbgn+eGhdOGOcY7QuFUkd/2odvnXDG8fK/jffE1LoNOlfYoBHC4w==",
"license": "Apache-2.0 AND MIT",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.17.0.tgz",
"integrity": "sha512-DEE0zRKvf3LJ0EcvG5XouJYOgFGWYAneZ0K1d23969z7LfSyqVmBdLC6BTwdLKuJk3ouUJIKXU1TcpFmjDuh7g==",
"peerDependencies": {
"@tensorflow/tfjs-core": "4.21.0"
"@tensorflow/tfjs-core": "4.17.0"
}
},
"node_modules/@tensorflow/tfjs/node_modules/regenerator-runtime": {
@@ -3480,8 +3472,7 @@
"node_modules/@types/long": {
"version": "4.0.2",
"resolved": "https://registry.npmjs.org/@types/long/-/long-4.0.2.tgz",
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA==",
"license": "MIT"
"integrity": "sha512-MqTGEo5bj5t157U6fA/BiDynNkn0YknVdh48CMPkTSpFTVmvao5UQmm7uEF6xBEo7qIMAlY/JSleYaE6VOdpaA=="
},
"node_modules/@types/minimist": {
"version": "1.2.5",
@@ -3501,7 +3492,6 @@
"version": "2.6.11",
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.11.tgz",
"integrity": "sha512-24xFj9R5+rfQJLRyM56qh+wnVSYhyXC2tkoBndtY0U+vubqNsYXGjufB2nn8Q6gt0LrARwL6UBtMCSVCwl4B1g==",
"license": "MIT",
"dependencies": {
"@types/node": "*",
"form-data": "^4.0.0"
@@ -3516,8 +3506,7 @@
"node_modules/@types/offscreencanvas": {
"version": "2019.3.0",
"resolved": "https://registry.npmjs.org/@types/offscreencanvas/-/offscreencanvas-2019.3.0.tgz",
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q==",
"license": "MIT"
"integrity": "sha512-esIJx9bQg+QYF0ra8GnvfianIY8qWB0GBx54PK5Eps6m+xTj86KLavHv6qDhzKcu5UUOgNfJ2pWaIIV7TRUd9Q=="
},
"node_modules/@types/resolve": {
"version": "1.17.1",
@@ -3531,8 +3520,7 @@
"node_modules/@types/seedrandom": {
"version": "2.4.34",
"resolved": "https://registry.npmjs.org/@types/seedrandom/-/seedrandom-2.4.34.tgz",
"integrity": "sha512-ytDiArvrn/3Xk6/vtylys5tlY6eo7Ane0hvcx++TKo6RxQXuVfW0AF/oeWqAj9dN29SyhtawuXstgmPlwNcv/A==",
"license": "MIT"
"integrity": "sha512-ytDiArvrn/3Xk6/vtylys5tlY6eo7Ane0hvcx++TKo6RxQXuVfW0AF/oeWqAj9dN29SyhtawuXstgmPlwNcv/A=="
},
"node_modules/@types/trusted-types": {
"version": "2.0.6",
@@ -3658,8 +3646,7 @@
"node_modules/@webgpu/types": {
"version": "0.1.38",
"resolved": "https://registry.npmjs.org/@webgpu/types/-/types-0.1.38.tgz",
"integrity": "sha512-7LrhVKz2PRh+DD7+S+PVaFd5HxaWQvoMqBbsV9fNJO1pjUs1P8bM2vQVNfk+3URTqbuTI7gkXi0rfsN0IadoBA==",
"license": "BSD-3-Clause"
"integrity": "sha512-7LrhVKz2PRh+DD7+S+PVaFd5HxaWQvoMqBbsV9fNJO1pjUs1P8bM2vQVNfk+3URTqbuTI7gkXi0rfsN0IadoBA=="
},
"node_modules/acorn": {
"version": "8.11.2",
@@ -3827,8 +3814,7 @@
"node_modules/asynckit": {
"version": "0.4.0",
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
"license": "MIT"
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q=="
},
"node_modules/at-least-node": {
"version": "1.0.0",
@@ -4426,7 +4412,6 @@
"version": "1.0.8",
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
"license": "MIT",
"dependencies": {
"delayed-stream": "~1.0.0"
},
@@ -4887,7 +4872,6 @@
"version": "1.0.0",
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
"license": "MIT",
"engines": {
"node": ">=0.4.0"
}
@@ -5373,7 +5357,6 @@
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.0.tgz",
"integrity": "sha512-ETEklSGi5t0QMZuiXoA/Q6vcnxcLQP5vdugSpuAyi6SVGi2clPPp+xgEhuMaHC+zGgn31Kd235W35f7Hykkaww==",
"license": "MIT",
"dependencies": {
"asynckit": "^0.4.0",
"combined-stream": "^1.0.8",
@@ -6594,8 +6577,7 @@
"node_modules/long": {
"version": "4.0.0",
"resolved": "https://registry.npmjs.org/long/-/long-4.0.0.tgz",
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA==",
"license": "Apache-2.0"
"integrity": "sha512-XsP+KhQif4bjX1kbuSiySJFNAehNxgLb6hPRGJ9QsUr8ajHkuXGdrHmFUTUUXhDwVX2R5bY4JNZEwbUiMhV+MA=="
},
"node_modules/lower-case": {
"version": "2.0.2",
@@ -6706,7 +6688,6 @@
"version": "1.52.0",
"resolved": "https://registry.npmjs.org/mime-db/-/mime-db-1.52.0.tgz",
"integrity": "sha512-sPU4uV7dYlvtWJxwwxHD0PuihVNiE7TyAbQ5SWxDCB9mUYvOgroQOwYQQOKPJ8CIbE+1ETVlOoK1UC2nU3gYvg==",
"license": "MIT",
"engines": {
"node": ">= 0.6"
}
@@ -6715,7 +6696,6 @@
"version": "2.1.35",
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
"license": "MIT",
"dependencies": {
"mime-db": "1.52.0"
},
@@ -6843,7 +6823,6 @@
"version": "2.6.13",
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.6.13.tgz",
"integrity": "sha512-StxNAxh15zr77QvvkmveSQ8uCQ4+v5FkvNTj0OESmiHu+VRi/gXArXtkWMElOsOUNLtUEvI4yS+rdtOHZTwlQA==",
"license": "MIT",
"dependencies": {
"whatwg-url": "^5.0.0"
},
@@ -6862,20 +6841,17 @@
"node_modules/node-fetch/node_modules/tr46": {
"version": "0.0.3",
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==",
"license": "MIT"
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw=="
},
"node_modules/node-fetch/node_modules/webidl-conversions": {
"version": "3.0.1",
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==",
"license": "BSD-2-Clause"
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ=="
},
"node_modules/node-fetch/node_modules/whatwg-url": {
"version": "5.0.0",
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
"license": "MIT",
"dependencies": {
"tr46": "~0.0.3",
"webidl-conversions": "^3.0.0"
@@ -8505,8 +8481,7 @@
"node_modules/seedrandom": {
"version": "3.0.5",
"resolved": "https://registry.npmjs.org/seedrandom/-/seedrandom-3.0.5.tgz",
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg==",
"license": "MIT"
"integrity": "sha512-8OwmbklUNzwezjGInmZ+2clQmExQPvomqjL7LFqOYqtmuxRgQYqOD3mHaU+MvZn5FLUeVxVfQjwLZW/n/JFuqg=="
},
"node_modules/semver": {
"version": "6.3.1",
@@ -11883,16 +11858,16 @@
}
},
"@tensorflow/tfjs": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.21.0.tgz",
"integrity": "sha512-7D/+H150ptvt+POMbsME3WlIvLiuBR2rCC2Z0hOKKb/5Ygkj7xsp/K2HzOvUj0g0yjk+utkU45QEYhnhjnbHRA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs/-/tfjs-4.17.0.tgz",
"integrity": "sha512-yXRBhpM3frlNA/YaPp6HNk9EfIi8han5RYeQA3R8OCa0Od+AfoG1PUmlxV8fE2wCorlGVyHsgpiJ6M9YZPB56w==",
"requires": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-webgl": "4.21.0",
"@tensorflow/tfjs-converter": "4.21.0",
"@tensorflow/tfjs-core": "4.21.0",
"@tensorflow/tfjs-data": "4.21.0",
"@tensorflow/tfjs-layers": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@tensorflow/tfjs-backend-webgl": "4.17.0",
"@tensorflow/tfjs-converter": "4.17.0",
"@tensorflow/tfjs-core": "4.17.0",
"@tensorflow/tfjs-data": "4.17.0",
"@tensorflow/tfjs-layers": "4.17.0",
"argparse": "^1.0.10",
"chalk": "^4.1.0",
"core-js": "3.29.1",
@@ -11908,35 +11883,35 @@
}
},
"@tensorflow/tfjs-backend-cpu": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.21.0.tgz",
"integrity": "sha512-yS9Oisg4L48N7ML6677ilv1eP5Jt59S74skSU1cCsM4yBAtH4DAn9b89/JtqBISh6JadanfX26b4HCWQvMvqFg==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-cpu/-/tfjs-backend-cpu-4.17.0.tgz",
"integrity": "sha512-2VSCHnX9qhYTjw9HiVwTBSnRVlntKXeBlK7aSVsmZfHGwWE2faErTtO7bWmqNqw0U7gyznJbVAjlow/p+0RNGw==",
"requires": {
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
}
},
"@tensorflow/tfjs-backend-webgl": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.21.0.tgz",
"integrity": "sha512-7k6mb7dd0uF9jI51iunF3rhEXjvR/a613kjWZ0Rj3o1COFrneyku2C7cRMZERWPhbgXZ+dF+j9MdpGIpgtShIQ==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-backend-webgl/-/tfjs-backend-webgl-4.17.0.tgz",
"integrity": "sha512-CC5GsGECCd7eYAUaKq0XJ48FjEZdgXZWPxgUYx4djvfUx5fQPp35hCSP9w/k463jllBMbjl2tKRg8u7Ia/LYzg==",
"requires": {
"@tensorflow/tfjs-backend-cpu": "4.21.0",
"@tensorflow/tfjs-backend-cpu": "4.17.0",
"@types/offscreencanvas": "~2019.3.0",
"@types/seedrandom": "^2.4.28",
"seedrandom": "^3.0.5"
}
},
"@tensorflow/tfjs-converter": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.21.0.tgz",
"integrity": "sha512-cUhU+F1lGx2qnKk/gRy8odBh0PZlFz0Dl71TG8LVnj0/g352DqiNrKXlKO/po9aWzP8x0KUGC3gNMSMJW+T0DA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-converter/-/tfjs-converter-4.17.0.tgz",
"integrity": "sha512-qFxIjPfomCuTrYxsFjtKbi3QfdmTTCWo+RvqD64oCMS0sjp7sUDNhJyKDoLx6LZhXlwXpHIVDJctLMRMwet0Zw==",
"requires": {}
},
"@tensorflow/tfjs-core": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.21.0.tgz",
"integrity": "sha512-ZbECwXps5wb9XXcGq4ZXvZDVjr5okc3I0+i/vU6bpQ+nVApyIrMiyEudP8f6vracVTvNmnlN62vUXoEsQb2F8g==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-core/-/tfjs-core-4.17.0.tgz",
"integrity": "sha512-v9Q5430EnRpyhWNd9LVgXadciKvxLiq+sTrLKRowh26BHyAsams4tZIgX3lFKjB7b90p+FYifVMcqLTTHgjGpQ==",
"requires": {
"@types/long": "^4.0.1",
"@types/offscreencanvas": "~2019.7.0",
@@ -11955,9 +11930,9 @@
}
},
"@tensorflow/tfjs-data": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.21.0.tgz",
"integrity": "sha512-LpJ/vyQMwYHkcVCqIRg7IVVw13VBY7rNAiuhmKP9S5NP/2ye4KA8BJ4XwDIDgjCVQM7glK9L8bMav++xCDf7xA==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-data/-/tfjs-data-4.17.0.tgz",
"integrity": "sha512-aPKrDFip+gXicWOFALeNT7KKQjRXFkHd/hNe/zs4mCFcIN00hy1PkZ6xkYsgrsdLDQMBSGeS4B4ZM0k5Cs88QA==",
"requires": {
"@types/node-fetch": "^2.1.2",
"node-fetch": "~2.6.1",
@@ -11965,9 +11940,9 @@
}
},
"@tensorflow/tfjs-layers": {
"version": "4.21.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.21.0.tgz",
"integrity": "sha512-a8KaMYlY3+llvE9079nvASKpaaf8xpCMdOjbgn+eGhdOGOcY7QuFUkd/2odvnXDG8fK/jffE1LoNOlfYoBHC4w==",
"version": "4.17.0",
"resolved": "https://registry.npmjs.org/@tensorflow/tfjs-layers/-/tfjs-layers-4.17.0.tgz",
"integrity": "sha512-DEE0zRKvf3LJ0EcvG5XouJYOgFGWYAneZ0K1d23969z7LfSyqVmBdLC6BTwdLKuJk3ouUJIKXU1TcpFmjDuh7g==",
"requires": {}
},
"@types/estree": {

View File

@@ -1,7 +1,7 @@
{
"name": "alvinn",
"private": true,
"version": "0.5.0-alpha",
"version": "0.5.0-rc",
"description": "ALVINN",
"repository": "",
"license": "UNLICENSED",
@@ -14,8 +14,7 @@
"cordova-ios": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova run ios",
"build-cordova-android": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova build android",
"cordova-android": "cross-env TARGET=cordova cross-env NODE_ENV=production vite build && node ./build/build-cordova.js && cd cordova && cordova run android",
"postinstall": "cpy --flat ./node_modules/framework7-icons/fonts/*.* ./src/fonts/",
"preview": "vite preview"
"postinstall": "cpy --flat ./node_modules/framework7-icons/fonts/*.* ./src/fonts/"
},
"browserslist": [
"IOS >= 15",
@@ -24,7 +23,7 @@
"last 5 Firefox versions"
],
"dependencies": {
"@tensorflow/tfjs": "^4.21.0",
"@tensorflow/tfjs": "^4.17.0",
"dom7": "^4.0.6",
"framework7": "^8.3.0",
"framework7-icons": "^5.0.5",

View File

@@ -1,17 +1,9 @@
demo: true
agreeExpire: 3
regions:
- thorax
- abdomen
- limbs
- head
useExternal: none
disableWorkers: false
site:
demo: true
regions:
- thorax
- abdomen
- limbs
external:
- name: Mserver
address: "192.169.1.105"
port: 9001
- name: Georgi lab server
address: "10.188.0.98"
port: 9001
infoUrl: http://anatlabwiki.midwestern.edu/vetlab/index.php/
address: "10.188.0.98"
port: 9001

View File

@@ -1,10 +1,11 @@
{
"version": "0.1.0-n4",
"region": "Thorax",
"version": "0.0.0-n1",
"region": "Coco",
"size": 640,
"epochs": 1000,
"name": "nano4",
"name": "coco128 test",
"yolo-version": "8.1.20 docker",
"date": "2024-03-08",
"export": "0.1.0-th"
"date": "2024-03-12",
"export": "coco128.yaml"
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,7 +1,7 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
description: Ultralytics best model trained on /usr/src/ultralytics/ultralytics/cfg/datasets/coco128.yaml
author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-08T20:14:34.118186'
date: '2024-03-12T16:25:00.089873'
version: 8.1.20
stride: 32
task: detect
@@ -10,44 +10,83 @@ imgsz:
- 640
- 640
names:
0: Abdominal diaphragm
1: Aorta
2: Azygous vein
3: Brachiocephalic trunk
4: Caudal vena cava
5: Cranial vena cava
6: Esophagus
7: External abdominal oblique
8: Iliocostalis
9: Latissimus dorsi
10: Left atrium
11: Left auricle
12: Left lung
13: Left subclavian artery
14: Left ventricle
15: Longissimus
16: Pectoralis profundus
17: Pectoralis superficialis
18: Pericardium
19: Phrenic nerve
20: Primary bronchus
21: Pulmonary artery
22: Pulmonary trunk
23: Pulmonary vein
24: Rectus abdominis
25: Rectus thoracis
26: Recurrent laryngeal nerve
27: Rhomboideus
28: Right atrium
29: Right auricle
30: Right lung
31: Right ventricle
32: Scalenus
33: Serratus dorsalis caudalis
34: Serratus dorsalis cranialis
35: Serratus ventralis
36: Spinalis
37: Sympathetic chain
38: Trachea
39: Trapezius
40: Vagus nerve
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush

File diff suppressed because one or more lines are too long

View File

@@ -1,43 +1,82 @@
[
"Abdominal diaphragm",
"Aorta",
"Azygous vein",
"Brachiocephalic trunk",
"Caudal vena cava",
"Cranial vena cava",
"Esophagus",
"External abdominal oblique",
"Iliocostalis",
"Latissimus dorsi",
"Left atrium",
"Left auricle",
"Left lung",
"Left subclavian artery",
"Left ventricle",
"Longissimus",
"Pectoralis profundus",
"Pectoralis superficialis",
"Pericardium",
"Phrenic nerve",
"Primary bronchus",
"Pulmonary artery",
"Pulmonary trunk",
"Pulmonary vein",
"Rectus abdominis",
"Rectus thoracis",
"Recurrent laryngeal nerve",
"Rhomboideus",
"Right atrium",
"Right auricle",
"Right lung",
"Right ventricle",
"Scalenus",
"Serratus dorsalis caudalis",
"Serratus dorsalis cranialis",
"Serratus ventralis",
"Spinalis",
"Sympathetic chain",
"Trachea",
"Trapezius",
"Vagus nerve"
"person",
"bicycle",
"car",
"motorcycle",
"airplane",
"bus",
"train",
"truck",
"boat",
"traffic light",
"fire hydrant",
"stop sign",
"parking meter",
"bench",
"bird",
"cat",
"dog",
"horse",
"sheep",
"cow",
"elephant",
"bear",
"zebra",
"giraffe",
"backpack",
"umbrella",
"handbag",
"tie",
"suitcase",
"frisbee",
"skis",
"snowboard",
"sports ball",
"kite",
"baseball bat",
"baseball glove",
"skateboard",
"surfboard",
"tennis racket",
"bottle",
"wine glass",
"cup",
"fork",
"knife",
"spoon",
"bowl",
"banana",
"apple",
"sandwich",
"orange",
"broccoli",
"carrot",
"hot dog",
"pizza",
"donut",
"cake",
"chair",
"couch",
"potted plant",
"bed",
"dining table",
"toilet",
"tv",
"laptop",
"mouse",
"remote",
"keyboard",
"cell phone",
"microwave",
"oven",
"toaster",
"sink",
"refrigerator",
"book",
"clock",
"vase",
"scissors",
"teddy bear",
"hair drier",
"toothbrush"
]

View File

@@ -1,10 +1,11 @@
{
"version": "0.1.0-n4",
"region": "Thorax",
"version": "0.0.0-n1",
"region": "Coco",
"size": 640,
"epochs": 1000,
"name": "nano4",
"name": "coco128 test",
"yolo-version": "8.1.20 docker",
"date": "2024-03-08",
"export": "0.1.0-th"
"date": "2024-03-12",
"export": "coco128.yaml"
}

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@@ -1,7 +1,7 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
description: Ultralytics best model trained on /usr/src/ultralytics/ultralytics/cfg/datasets/coco128.yaml
author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-08T20:14:34.118186'
date: '2024-03-12T16:25:00.089873'
version: 8.1.20
stride: 32
task: detect
@@ -10,44 +10,83 @@ imgsz:
- 640
- 640
names:
0: Abdominal diaphragm
1: Aorta
2: Azygous vein
3: Brachiocephalic trunk
4: Caudal vena cava
5: Cranial vena cava
6: Esophagus
7: External abdominal oblique
8: Iliocostalis
9: Latissimus dorsi
10: Left atrium
11: Left auricle
12: Left lung
13: Left subclavian artery
14: Left ventricle
15: Longissimus
16: Pectoralis profundus
17: Pectoralis superficialis
18: Pericardium
19: Phrenic nerve
20: Primary bronchus
21: Pulmonary artery
22: Pulmonary trunk
23: Pulmonary vein
24: Rectus abdominis
25: Rectus thoracis
26: Recurrent laryngeal nerve
27: Rhomboideus
28: Right atrium
29: Right auricle
30: Right lung
31: Right ventricle
32: Scalenus
33: Serratus dorsalis caudalis
34: Serratus dorsalis cranialis
35: Serratus ventralis
36: Spinalis
37: Sympathetic chain
38: Trachea
39: Trapezius
40: Vagus nerve
0: person
1: bicycle
2: car
3: motorcycle
4: airplane
5: bus
6: train
7: truck
8: boat
9: traffic light
10: fire hydrant
11: stop sign
12: parking meter
13: bench
14: bird
15: cat
16: dog
17: horse
18: sheep
19: cow
20: elephant
21: bear
22: zebra
23: giraffe
24: backpack
25: umbrella
26: handbag
27: tie
28: suitcase
29: frisbee
30: skis
31: snowboard
32: sports ball
33: kite
34: baseball bat
35: baseball glove
36: skateboard
37: surfboard
38: tennis racket
39: bottle
40: wine glass
41: cup
42: fork
43: knife
44: spoon
45: bowl
46: banana
47: apple
48: sandwich
49: orange
50: broccoli
51: carrot
52: hot dog
53: pizza
54: donut
55: cake
56: chair
57: couch
58: potted plant
59: bed
60: dining table
61: toilet
62: tv
63: laptop
64: mouse
65: remote
66: keyboard
67: cell phone
68: microwave
69: oven
70: toaster
71: sink
72: refrigerator
73: book
74: clock
75: vase
76: scissors
77: teddy bear
78: hair drier
79: toothbrush

File diff suppressed because one or more lines are too long

View File

@@ -1,10 +0,0 @@
{
"version": "0.1.0-n4",
"region": "Thorax",
"size": 640,
"epochs": 1000,
"name": "nano4",
"yolo-version": "8.1.20 docker",
"date": "2024-03-08",
"export": "0.1.0-th"
}

View File

@@ -1,53 +0,0 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-08T20:14:34.118186'
version: 8.1.20
stride: 32
task: detect
batch: 1
imgsz:
- 640
- 640
names:
0: Abdominal diaphragm
1: Aorta
2: Azygous vein
3: Brachiocephalic trunk
4: Caudal vena cava
5: Cranial vena cava
6: Esophagus
7: External abdominal oblique
8: Iliocostalis
9: Latissimus dorsi
10: Left atrium
11: Left auricle
12: Left lung
13: Left subclavian artery
14: Left ventricle
15: Longissimus
16: Pectoralis profundus
17: Pectoralis superficialis
18: Pericardium
19: Phrenic nerve
20: Primary bronchus
21: Pulmonary artery
22: Pulmonary trunk
23: Pulmonary vein
24: Rectus abdominis
25: Rectus thoracis
26: Recurrent laryngeal nerve
27: Rhomboideus
28: Right atrium
29: Right auricle
30: Right lung
31: Right ventricle
32: Scalenus
33: Serratus dorsalis caudalis
34: Serratus dorsalis cranialis
35: Serratus ventralis
36: Spinalis
37: Sympathetic chain
38: Trachea
39: Trapezius
40: Vagus nerve

File diff suppressed because one or more lines are too long

View File

@@ -1,43 +0,0 @@
[
"Abdominal diaphragm",
"Aorta",
"Azygous vein",
"Brachiocephalic trunk",
"Caudal vena cava",
"Cranial vena cava",
"Esophagus",
"External abdominal oblique",
"Iliocostalis",
"Latissimus dorsi",
"Left atrium",
"Left auricle",
"Left lung",
"Left subclavian artery",
"Left ventricle",
"Longissimus",
"Pectoralis profundus",
"Pectoralis superficialis",
"Pericardium",
"Phrenic nerve",
"Primary bronchus",
"Pulmonary artery",
"Pulmonary trunk",
"Pulmonary vein",
"Rectus abdominis",
"Rectus thoracis",
"Recurrent laryngeal nerve",
"Rhomboideus",
"Right atrium",
"Right auricle",
"Right lung",
"Right ventricle",
"Scalenus",
"Serratus dorsalis caudalis",
"Serratus dorsalis cranialis",
"Serratus ventralis",
"Spinalis",
"Sympathetic chain",
"Trachea",
"Trapezius",
"Vagus nerve"
]

View File

@@ -1,12 +0,0 @@
{
"version": "0.3.1-s1",
"region": "Thorax",
"size": 960,
"epochs": 2000,
"epochsFinal:": 1656,
"name": "small1",
"yolo-version": "8.2.16 docker",
"date": "2024-06-05",
"export": "0.3.0-th",
"grayscale": true
}

View File

@@ -1,53 +0,0 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.3.0/thorax_g.yaml
author: Ultralytics
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-06-05T22:55:38.088791'
version: 8.1.20
stride: 32
task: detect
batch: 1
imgsz:
- 960
- 960
names:
0: Abdominal diaphragm
1: Aorta
2: Azygous vein
3: Brachiocephalic trunk
4: Caudal vena cava
5: Cranial vena cava
6: Esophagus
7: External abdominal oblique
8: Iliocostalis
9: Latissimus dorsi
10: Left atrium
11: Left auricle
12: Left lung
13: Left subclavian artery
14: Left ventricle
15: Longissimus
16: Pectoralis profundus
17: Pectoralis superficialis
18: Pericardium
19: Phrenic nerve
20: Primary bronchus
21: Pulmonary artery
22: Pulmonary trunk
23: Pulmonary vein
24: Rectus abdominis
25: Rectus thoracis
26: Recurrent laryngeal nerve
27: Rhomboideus
28: Right atrium
29: Right auricle
30: Right lung
31: Right ventricle
32: Scalenus
33: Serratus dorsalis caudalis
34: Serratus dorsalis cranialis
35: Serratus ventralis
36: Spinalis
37: Sympathetic chain
38: Trachea
39: Trapezius
40: Vagus nerve

File diff suppressed because one or more lines are too long

View File

@@ -1,12 +1,10 @@
{
"version": "0.2.1-n3",
"version": "0.1.0-n4",
"region": "Thorax",
"size": 640,
"epochs": 1500,
"name": "nano3",
"yolo-version": "8.2.16 docker",
"date": "2024-06-17",
"export": "0.2.1-th",
"grayscale": true,
"background": 35
}
"epochs": 1000,
"name": "nano4",
"yolo-version": "8.1.20 docker",
"date": "2024-03-08",
"export": "0.1.0-th"
}

View File

@@ -1,9 +1,8 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax 0.2.1/thorax_g.yaml
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
author: Ultralytics
date: '2024-06-17T22:40:05.967309'
version: 8.2.16
license: AGPL-3.0 License (https://ultralytics.com/license)
docs: https://docs.ultralytics.com
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-08T20:14:34.118186'
version: 8.1.20
stride: 32
task: detect
batch: 1

File diff suppressed because one or more lines are too long

View File

@@ -1,12 +1,10 @@
{
"version": "0.2.1-s1",
"version": "0.1.0-s1",
"region": "Thorax",
"size": 1080,
"epochs": 1399,
"size": 640,
"epochs": 1000,
"name": "small1",
"yolo-version": "8.2.16 docker",
"date": "2024-06-18",
"export": "0.2.1-th",
"grayscale": true,
"background": 35
"yolo-version": "8.1.20 docker",
"date": "2024-03-07",
"export": "0.1.0-th"
}

View File

@@ -1,15 +1,14 @@
description: Ultralytics best model trained on /data/ALVINN/Thorax 0.2.1/thorax_g.yaml
description: Ultralytics best model trained on /data/ALVINN/Thorax/Thorax 0.1.0/thorax.yaml
author: Ultralytics
date: '2024-06-18T23:10:47.568324'
version: 8.2.16
license: AGPL-3.0 License (https://ultralytics.com/license)
docs: https://docs.ultralytics.com
license: AGPL-3.0 https://ultralytics.com/license
date: '2024-03-07T16:03:03.296997'
version: 8.1.20
stride: 32
task: detect
batch: 1
imgsz:
- 1088
- 1088
- 640
- 640
names:
0: Abdominal diaphragm
1: Aorta

File diff suppressed because one or more lines are too long

View File

@@ -1,177 +0,0 @@
import * as tf from '@tensorflow/tfjs'
let model = null
onmessage = function (e) {
switch (e.data.call) {
case 'loadModel':
loadModel(e.data.weights,e.data.preload).then(() => {
postMessage({success: 'model'})
}).catch((err) => {
postMessage({error: true, message: err.message})
})
break
case 'localDetect':
localDetect(e.data.image).then((dets) => {
postMessage({success: 'detection', detections: dets})
}).catch((err) => {
//throw (err)
postMessage({error: true, message: err.message})
})
e.data.image.close()
break
case 'videoFrame':
videoFrame(e.data.image).then((frameDet) =>{
postMessage({succes: 'frame', coords: frameDet.cds, modelWidth: frameDet.mW, modelHeight: frameDet.mH})
}).catch((err) => {
postMessage({error: true, message: err.message})
})
e.data.image.close()
break
default:
console.log('Worker message incoming:')
console.log(e)
postMessage({result1: 'First result', result2: 'Second result'})
break
}
}
async function loadModel(weights, preload) {
if (model && model.modelURL == weights) {
return model
} else if (model) {
tf.dispose(model)
}
model = await tf.loadGraphModel(weights)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
/*****************
* If preloading then run model
* once on fake data to preload
* weights for a faster response
*****************/
if (preload) {
const dummyT = tf.ones([1,modelWidth,modelHeight,3])
model.predict(dummyT)
}
return model
}
async function localDetect(imageData) {
console.time('sw: pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
})
tf.dispose(gTense)
console.timeEnd('sw: pre-process')
console.time('sw: run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('sw: run prediction')
console.time('sw: post-process')
const outputSize = res.shape[1]
const output = {
detections: []
}
let rawBoxes = []
let rawScores = []
let getScores, getBox, boxCalc
for (let i = 0; i < rawRes.length; i++) {
getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
getBox = rawRes[i].slice(0,4)
boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
(getBox[1] + (getBox[3] / 2)) / modelHeight,
]
rawBoxes.push(boxCalc)
rawScores.push(getScores)
}
if (rawBoxes.length > 0) {
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let resBoxes = null
let validBoxes = []
let structureScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (let c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = resBoxes.dataSync()
tf.dispose(resBoxes)
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
let outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
validBoxes = []
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
tf.dispose(resBoxes)
const valid_detections_data = classes_data.length
for (let i =0; i < valid_detections_data; i++) {
let [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
"bottom": dBottom,
"right": dRight,
"label": classes_data[i],
"confidence": scores_data[i] * 100
})
}
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('sw: post-process')
return output || { detections: [] }
}
async function videoFrame (vidData) {
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
console.time('sw: frame-process')
let rawCoords = []
try {
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
const res = model.predict(input)
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
if (rawRes) {
for (let i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
foundTarget.push(Math.max(...getScores))
rawCoords.push(foundTarget)
}
}
}
tf.dispose(input)
tf.dispose(res)
tf.dispose(rawRes)
} catch (e) {
console.log(e)
}
console.timeEnd('sw: frame-process')
return {cds: rawCoords, mW: modelWidth, mH: modelHeight}
}

View File

@@ -33,7 +33,7 @@
ALVINN is for educational purposes only. It may not be used for medical diagnosis, intervention, or treatment.
</h3>
<div style="display: flex; justify-content: space-around; flex-direction: row; align-items: center;">
<span v-if="!siteConf || !siteConf.agreeExpire == 0" style="height: min-content;">
<span style="height: min-content;">
<f7-checkbox v-model:checked="rememberAgreement"/> Don't show again
</span>
<f7-button text="I agree" fill @click="setAgreement" />
@@ -68,63 +68,34 @@
rememberAgreement: false,
siteAgreement: false,
dateAgreement: null,
showDisclaimer: false,
showDisclaimer: true,
alvinnVersion: store().getVersion,
siteConf: {}
}
},
async created () {
document.addEventListener('keydown', e => {
if (e.code == 'KeyR') {
console.log(f7.views.main.router.history)
}
if (e.code == 'KeyB') {
f7.views.main.router.back()
}
})
if (!window.cordova) {
const confText = await fetch('./conf/conf.yaml')
.then((mod) => { return mod.text() })
this.siteConf = YAML.parse(confText)
}
const loadSiteSettings = localStorage.getItem('siteSettings')
created () {
fetch(`${!!window.cordova ? 'https://localhost' : '.'}/conf/conf.yaml`)
.then((mod) => { return mod.text() })
.then((confText) => {
this.siteConf = YAML.parse(confText)
console.log(this.siteConf)
})
var loadSiteSettings = localStorage.getItem('siteSettings')
if (loadSiteSettings) {
let loadedSettings = JSON.parse(loadSiteSettings)
var loadedSettings = JSON.parse(loadSiteSettings)
this.siteAgreement = loadedSettings.siteAgreement
this.rememberAgreement = loadedSettings.rememberAgreement
this.dateAgreement = loadedSettings.dateAgreement && new Date(loadedSettings.dateAgreement)
}
const curDate = new Date ()
const expireMonth = (this.dateAgreement?.getMonth() || 0) + (this.siteConf?.agreeExpire || 3)
const agreeStillValid = this.dateAgreement && (curDate < this.dateAgreement.setMonth(expireMonth))
if (this.siteAgreement && this.rememberAgreement && agreeStillValid && !this.siteConf?.agreeExpire == 0) {
var curDate = new Date ()
var agreeStillValid = this.dateAgreement && (curDate < this.dateAgreement.setMonth(this.dateAgreement.getMonth() + 3))
if (this.siteAgreement && this.rememberAgreement && agreeStillValid) {
this.showDisclaimer = false
store().agree()
} else {
this.showDisclaimer = true
}
store().set('enabledRegions',this.siteConf?.regions)
store().set('siteDemo',this.siteConf?.demo)
store().set('infoUrl',this.siteConf?.infoUrl)
const loadServerSettings = localStorage.getItem('serverSettings')
if (this.siteConf.disableWorkers) {
store().disableWorkers()
}
if (this.siteConf?.useExternal) {
if (!['none','list','optional','required'].includes(this.siteConf.useExternal)) {
console.warn(`'${this.siteConf.useExternal}' is not a valid value for useExternal configuration: using 'optional'`)
} else {
store().set('useExternal',this.siteConf.useExternal)
if (this.siteConf.external) {
store().set('externalServerList',this.siteConf.external)
}
}
}
if (this.siteConf.useExternal == 'none') {
localStorage.setItem('serverSettings','{"use":false}')
} else if (!loadServerSettings && !this.siteConf.external) {
var loadServerSettings = localStorage.getItem('serverSettings')
if (!loadServerSettings) {
localStorage.setItem('serverSettings','{"use":false,"address":"10.188.0.98","port":"9001","previous":{"10.188.0.98":"9001"}}')
} else if (this.siteConf.useExternal == 'required') {
localStorage.setItem('serverSettings',`{"use":true,"address":"${this.siteConf.external[0].address}","port":${this.siteConf.external[0].port}}`)
}
},
methods: {
@@ -151,7 +122,7 @@
this.showDisclaimer = false
},
() => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'ERROR: No settings saved',
closeTimeout: 2000
})
@@ -163,11 +134,13 @@
setup() {
const device = getDevice();
// Framework7 Parameters
const loadThemeSettings = localStorage.getItem('themeSettings')
let themeSettings = {}
let darkTheme = 'auto'
if (loadThemeSettings) { themeSettings = JSON.parse(loadThemeSettings) }
if (themeSettings?.darkMode) darkTheme = themeSettings.darkMode
var loadThemeSettings = localStorage.getItem('themeSettings')
if (loadThemeSettings) var themeSettings = JSON.parse(loadThemeSettings)
try {
if (themeSettings.darkMode.toString()) var darkTheme = themeSettings.darkMode
} catch {
var darkTheme = 'auto'
}
const f7params = {
name: 'ALVINN', // App name
theme: 'auto', // Automatic theme detection

View File

@@ -1,25 +1,14 @@
<template>
<svg width="100%" height="100%" version="1.1" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg">
<g v-if="iconSet == 1" stroke="none" :fill="fillColor" >
<path d="M22,8.25 20.75,7.5 20.25,6.5 19,6 V5 L18.25,6 16,7.75 13.5,8.75 H8.5 L7,9 6,9.75 5,11 L4.25,12.5 3.5,14 2.5,15 2,15.5 2.5,15.75 3.5,15.5 4.5,14.25 5.5,12.25 6.75,10.75 7,12 7.25,13.25 6.5,15.5 7,19 H8 V 18.5 L7.5,18.25 7.75,15.75 9.75,12.25 12,13 15.25,13.5 15.5,17.25 16,19 H17 V18.5 L16.5,18.25 V15.5 L17,13 17.75,10.75 19,8.75 H20 L21.25,9 Z" style="opacity: .4;"/>
<path v-if="region == 0" d="M16,7.75 13.5,8.75 12,13 15.25,13.5 17,13 17.75,10.75 Z" fill-rule="evenodd" :fill="fillColor" />
<path v-else-if="region ==1" d="M13.5,8.75 H8.5 L7,9 6,9.75 5,11 4.25,12.5 3.5,14 2.5,15 2,15.5 2.5,15.75 3.5,15.5 4.5,14.25 5.5,12.25 6.75,10.75 7,12 9.75,12.25 12,13 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 2" d="M15,8.5 C14,8.5 13.25,9.25 13.25,10.25 C13.25,10.75 13.5,11.25 13.75,11.5 L15.25,13.5 15.5,17.25 16,19 H17 V18.5 L16.5,18.25 V15.5 L17,13 17.75,10.75 16.25,9 C16,8.75 15.5,8.5 15,8.5 Z M8.5,9 C7.5,9 6.75,9.75 6.75,10.75 L7,12 7.25,13.25 6.5,15.5 7,19 H8 V18.5 L7.5,18.25 7.75,15.75 9.75,12.25 10.25,10.75 C10.25,9.75 9.5,9 8.5,9 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 3" d="M22,8.25 20.75,7.5 20.25,6.5 19,6 V5 L18.25,6 16,7.75 17.75,10.75 19,8.75 H20 L21.25,9 Z" :fill="fillColor" fill-rule="evenodd"/>
</g>
<g v-else-if="iconSet == 2" stroke="none" :fill="fillColor" >
<path d="M22,9.5 20.5,8.5 19.75,7.25 18.25,6.75 V 5 L 17,6.75 15,8.25 12,9.5 H 5.75 L 2.75,10 2,12 2.5,15.75 3.25,16 4,19 H 5.5 V 18.25 L 5,18 5.25,16.25 6,15.25 H 10 L 13.75,16 14.75,19 H 16.25 V 18.25 L 15.75,18 V 16 L 17,15.25 17.5,12 18.25,10.25 H 19.5 L 21,10.5 Z" style="opacity: .4;"/>
<path v-if="region == 0" d="M12,9.5 H 11 L 10,15.25 13.75,16 H 15.75 L 17,15.25 17.5,12 Z" fill-rule="evenodd" :fill="fillColor" />
<path v-else-if="region ==1" d="M 11,9.5 H 5.75 L 2.75,10 2,12 2.5,15.75 3.25,16 6,15.25 H 10 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 2" d="M11.25,10.25 C 10.25,11.25 10.25,12.75 11.25,13.75 L 13.75,16 14.75,19 H 16.25 V 18.25 L 15.75,18 V 16 L 16,12 14.75,10.25 C 13.75,9.25 12.25,9.25 11.25,10.25 Z M 3,11 2,12 2.5,15.75 3.25,16 4,19 H 5.5 V 18.25 L 5,18 5.25,16.25 6,15.25 6.5,14.5 C 7.5,13.5 7.5,12 6.5,11 C 5.5,10 4,10 3,11 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 3" d="M 22,9.5 20.5,8.5 19.75,7.25 18.25,6.75 V 5 L 17,6.75 15,8.25 12,9.5 17.5,12 18.25,10.25 H 19.5 L 21,10.5 Z" :fill="fillColor" fill-rule="evenodd"/>
</g>
<g v-else-if="iconSet == 3" stroke="none" :fill="fillColor" >
<path d="M22,6.25 L21,6 V5 L19.5,4.5 V3 L18.25,4.5 16,6.5 12.5,8 6,8.25 4,8.5 2.5,9.75 2,10.5 2.75,10.75 3.5,10.25 V11 L4,12.5 4.25,14 3.25,16.5 4,21 H5.25 V20.25 L4.75,20 5,16.75 7.75,13 10.5,14.5 15,15.25 15.25,18.75 16,21 H17.25 V20.25 L16.75,20 V16.5 L17.75,13.75 18.5,10.5 19.5,8.25 H20.5 L21.5,8.75 22,7.75 Z" style="opacity: .4;"/>
<path v-if="region == 0" d="M16,6.5 L12.5,8 10.5,14.5 15,15.25 17.75,13.75 18.5,10.5 Z" fill-rule="evenodd" :fill="fillColor" />
<path v-else-if="region ==1" d="M12.5,8 L6,8.25 4,8.5 2.5,9.75 2,10.5 2.75,10.75 3.5,10.25 V11 L4,12.5 7.75,13 10.5,14.5 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 2" d="M12.75,8.25 C11.75,9.25 11.75,10.75 12.75,11.75 L15,15.25 15.25,18.75 16,21 H17.25 V20.25 L16.75,20 V16.5 L17.75,13.75 18.5,10.5 16.25,8.25 C15.25,7.25 13.75,7.25 12.75,8.25 Z M6,8.5 C4.75,8.5 3.5,9.75 3.5,11 L4,12.5 4.25,14 3.25,16.5 4,21 H5.25 V20.25 L4.75,20 5,16.75 7.75,13 8.5,11 C8.5,9.75 7.25,8.5 6,8.5 Z" :fill="fillColor" fill-rule="evenodd"/>
<path v-else-if="region == 3" d="M22,6.25 L21,6 V5 L19.5,4.5 V3 L18.25,4.5 L16,6.5 18.5,10.5 19.5,8.25 H20.5 L21.5,8.75 22,7.75 Z" :fill="fillColor" fill-rule="evenodd"/>
<svg width="100%" height="100%" version="1.1" viewBox="0 0 26.458333 26.458333" xmlns="http://www.w3.org/2000/svg">
<g stroke="none" :fill="fillColor" >
<path d="m25.402178 7.8631343c-0.487907-0.3670601-0.811572-0.7261214-1.573424-1.106523-0.006122-0.1598737 0.053853-0.2411643-0.072374-0.5438299-0.239221-0.3572156-1.352454-0.987126-2.19723-0.8590224-1.567124 0.9252583-1.879175 1.9380345-3.311246 2.9148849-0.987966 0.103956-2.015535 0.3206455-3.091153 0.6741123-10.556415-1.8721062-8.2481554 5.9196998-14.460584 1.7189868 0 0-0.24989902 0.06545-0.28777276 0.170279-0.0360567 0.0998 0.10708587 0.299783 0.10708587 0.299783 2.0948939 1.933517 4.742145 1.74421 6.6624536-0.07316 0.096935 0.768305 0.3887649 1.92789 0.8180324 3.363404-0.035692 1.245357-1.2923422 2.350278-1.3169003 2.801484-0.013354 0.24535 0.5120291 3.6149 0.7015429 3.650219l0.7793046 0.145235c0.8989154 0.167526 0.7195768-0.420583 0.3224789-0.780361-0.2085791-0.188976-0.3404558-0.252396-0.3637846-0.441707-0.3810495-3.092169 2.1284358-4.423261 2.4023638-6.742929 2.453391 0.120243 3.974486 1.282365 6.721539 1.403033 0.136906 1.035362-0.177341 4.099457-0.120257 4.484465 0.04824 0.325337 0.511082 0.918401 0.497537 1.876854-3e-3 0.211416 0.410117 0.159484 0.619918 0.185743 0.799059 0.09999 1.033405-0.329373 0.42557-0.75884-0.132327-0.0935-0.456134-0.264276-0.476806-0.424973-0.251045-1.951541 1.103782-4.917365 1.103782-4.917365 0.355435-0.554509 0.707693-1.135262 1.002776-2.188396 0.160636-0.543413 0.157772-1.012576 0.119972-1.465872 1.541867-1.5721797 1.123352-2.3466703 2.548492-2.7336036 0.65786 0.059985 1.147615 0.1738285 1.444935 0.3493259 0.420933-0.188852 0.760222-0.5096057 0.993749-1.001227z" style="opacity: .25;"/>
<path v-if="region == 0" d="m 18.247904,8.2686439 c -0.987966,0.103956 -3.091153,0.6741123 -3.091153,0.6741123 -1.652395,2.7995828 -2.226698,3.8098238 -2.580037,4.4476078 0,0 2.617397,0.984666 4.665796,1.066659 -0.003,0.01385 2.049744,0.445884 2.049744,0.445884 0,0 0.707693,-1.135262 1.002776,-2.188396 0.160636,-0.543413 0.157772,-1.012576 0.119972,-1.465872 -0.291029,-0.377705 -1.38593,-1.9038754 -2.167098,-2.9799951 z" fill-rule="evenodd" :fill="fillColor" />
<path v-else-if="region ==1" d="m15.156751 8.9427562c-10.556415-1.8721062-8.2481554 5.9196998-14.460584 1.7189868 0 0-0.24989902 0.06545-0.28777276 0.170279-0.0360567 0.0998 0.10708587 0.299783 0.10708587 0.299783 2.0948939 1.933517 4.742145 1.74421 6.6624536-0.07316 0.048468 0.384152 0.1456587 0.866125 0.2843915 1.431499 0.7210773 0.130029 2.5390772 0.501293 3.0586462 0.563846 0.613348 0.03006 1.528237 0.20676 2.05877 0.334503 0.563462-1.044613 0.536275-0.982536 2.57701-4.4457368z" :fill="fillColor" fill-rule="evenodd"/>
<g v-else-if="region == 2" :fill="fillColor" fill-rule="evenodd">
<path d="m17.24251 14.457023c0.136906 1.035362-0.177341 4.099457-0.120257 4.484465 0.04824 0.325337 0.511082 0.918401 0.497537 1.876854-3e-3 0.211416 0.410117 0.159484 0.619918 0.185743 0.799059 0.09999 1.033405-0.329373 0.42557-0.75884-0.132327-0.0935-0.456134-0.264276-0.476806-0.424973-0.251045-1.951541 1.103782-4.917365 1.103782-4.917365 0.355435-0.554509 0.707693-1.135262 1.002776-2.188396 0.160636-0.543413 0.157772-1.012576 0.119972-1.465872-3.100189-4.8581326-4.866767-0.394712-3.172492 3.208384z" />
<path d="m7.1779333 11.058645c0.096935 0.768305 0.3887649 1.92789 0.8180324 3.363404-0.035692 1.245357-1.2923422 2.350278-1.3169003 2.801484-0.013354 0.24535 0.5120291 3.6149 0.7015429 3.650219l0.7793046 0.145235c0.8989154 0.167526 0.7195768-0.420583 0.3224789-0.780361-0.2085791-0.188976-0.3404558-0.252396-0.3637846-0.441707-0.3810495-3.092169 2.1284358-4.423261 2.4023638-6.742929 2.1562-5.4517681-2.8350883-3.4878487-3.3430377-1.995345z" />
</g>
<path v-else-if="region == 3" d="m25.402178 7.8631343c-0.487907-0.3670601-0.811572-0.7261214-1.573424-1.106523-0.006122-0.1598737 0.053853-0.2411643-0.072374-0.5438299-0.239221-0.3572156-1.352454-0.987126-2.19723-0.8590224-1.567124 0.9252583-1.879175 1.9380345-3.311246 2.9148849 0.566485 0.8398567 1.254642 1.7575311 2.167098 2.9799951 1.541867-1.5721797 1.123352-2.3466703 2.548492-2.7336036 0.65786 0.059985 1.147615 0.1738285 1.444935 0.3493259 0.420933-0.188852 0.760222-0.5096057 0.993749-1.001227z" :fill="fillColor" fill-rule="evenodd"/>
</g>
</svg>
</template>
@@ -37,13 +26,6 @@
fillColor: {
type: String,
default: "var(--avn-theme-color)"
},
iconSet: {
type: Number,
default: 1,
validator(value) {
return value >= 1 && value <= 3
}
}
}
}

View File

@@ -16,10 +16,6 @@
<path v-else-if="icon == 'limbs'" d="M540-440q17 0 28.5-11.5T580-480q0-7-1.5-12.5T574-503q11-4 18.5-14t7.5-23q0-17-11.5-28.5T560-580q-13 0-23 7t-14 19l-146-70q2-4 2.5-8t.5-8q0-17-11.5-28.5T340-680q-17 0-28.5 11.5T300-640q0 6 2 11.5t5 10.5q-11 4-19 14t-8 24q0 17 11.5 28.5T320-540q14 0 24-7.5t14-19.5l146 70-4 17q0 17 11.5 28.5T540-440ZM394-80q-16-47-24-92.5t-10-86q-2-40.5-.5-74.5t4.5-58q-1 0 0 0-22-5-50.5-12.5t-61-20.5Q220-437 186-455.5T119-500l50-70q39 35 81.5 55.5t78.5 32q36 11.5 60 15l24 3.5q18 1 28.5 15t7.5 32l-4.5 33.5q-4.5 33.5-5 83.5t7.5 109q8 59 33 111h-86Zm366 0h-80v-423q0-48-25.5-87T586-649L313-772l49-67 257 117q64 29 102.5 88T760-503v423Zm-280 0q-25-52-33-111t-7.5-109q.5-50 5-83.5L449-417q3-18-7.5-32T413-464l-24-3.5q-24-3.5-60-15t-78.5-32Q208-535 169-570q39 35 81.5 55.5t78.5 32q36 11.5 60 15l24 3.5q18 1 28.5 15t7.5 32l-4.5 33.5q-4.5 33.5-5 83.5t7.5 109q8 59 33 111Z"/>
<path v-else-if="icon == 'head'" d="M194-80v-395h80v315h280v-193l105-105q29-29 45-65t16-77q0-40-16.5-76T659-741l-25-26-127 127H347l-43 43-57-56 67-67h160l160-160 82 82q40 40 62 90.5T800-600q0 57-22 107.5T716-402l-82 82v240H194Zm197-187L183-475q-11-11-17-26t-6-31q0-16 6-30.5t17-25.5l84-85 124 123q28 28 43.5 64.5T450-409q0 40-15 76.5T391-267Z"/>
<path v-else-if="icon == 'photo_sample'" d="M240-80q-33 0-56.5-23.5T160-160v-640q0-33 23.5-56.5T240-880h480q33 0 56.5 23.5T800-800v640q0 33-23.5 56.5T720-80H240Zm0-80h480v-640h-80v280l-100-60-100 60v-280H240v640Zm40-80h400L545-420 440-280l-65-87-95 127Zm-40 80v-640 640Zm200-360 100-60 100 60-100-60-100 60Z"/>
<path v-else-if="icon == 'reset_slide'" d="M520-330v-60h160v60H520Zm60 210v-50h-60v-60h60v-50h60v160h-60Zm100-50v-60h160v60H680Zm40-110v-160h60v50h60v60h-60v50h-60Zm111-280h-83q-26-88-99-144t-169-56q-117 0-198.5 81.5T200-480q0 72 32.5 132t87.5 98v-110h80v240H160v-80h94q-62-50-98-122.5T120-480q0-75 28.5-140.5t77-114q48.5-48.5 114-77T480-840q129 0 226.5 79.5T831-560Z"/>
<path v-else-if="icon == 'zoom_to'" d="M440-40v-167l-44 43-56-56 140-140 140 140-56 56-44-43v167h-80ZM220-340l-56-56 43-44H40v-80h167l-43-44 56-56 140 140-140 140Zm520 0L600-480l140-140 56 56-43 44h167v80H753l43 44-56 56Zm-260-80q-25 0-42.5-17.5T420-480q0-25 17.5-42.5T480-540q25 0 42.5 17.5T540-480q0 25-17.5 42.5T480-420Zm0-180L340-740l56-56 44 43v-167h80v167l44-43 56 56-140 140Z"/>
<path v-else-if="icon == 'reset_zoom'" d="M480-320v-100q0-25 17.5-42.5T540-480h100v60H540v100h-60Zm60 240q-25 0-42.5-17.5T480-140v-100h60v100h100v60H540Zm280-240v-100H720v-60h100q25 0 42.5 17.5T880-420v100h-60ZM720-80v-60h100v-100h60v100q0 25-17.5 42.5T820-80H720Zm111-480h-83q-26-88-99-144t-169-56q-117 0-198.5 81.5T200-480q0 72 32.5 132t87.5 98v-110h80v240H160v-80h94q-62-50-98-122.5T120-480q0-75 28.5-140.5t77-114q48.5-48.5 114-77T480-840q129 0 226.5 79.5T831-560Z"/>
<path v-else-if="icon == 'clipboard'" d="M200-120q-33 0-56.5-23.5T120-200v-560q0-33 23.5-56.5T200-840h167q11-35 43-57.5t70-22.5q40 0 71.5 22.5T594-840h166q33 0 56.5 23.5T840-760v560q0 33-23.5 56.5T760-120H200Zm0-80h560v-560h-80v120H280v-120h-80v560Zm280-560q17 0 28.5-11.5T520-800q0-17-11.5-28.5T480-840q-17 0-28.5 11.5T440-800q0 17 11.5 28.5T480-760Z"/>
</svg>
</template>
@@ -46,11 +42,7 @@
'abdomen',
'limbs',
'head',
'photo_sample',
'reset_slide',
'zoom_to',
'reset_zoom',
'clipboard'
'photo_sample'
]
return iconList.includes(value)
}

View File

@@ -89,26 +89,6 @@
display: none;
}
.level-slide-marker {
border: var(--avn-slide-marker-border);
position: absolute;
top: 0%;
height: 100%;
left: var(--avn-slide-marker-position);
}
.range-bar {
background: var(--avn-theme-color);
}
.range-bar-active {
background: rgba(255,255,255,.8);
}
.dark .range-bar-active {
background: rgba(0,0,0,.8);
}
.image-menu {
grid-area: menu-view;
margin: 5px;
@@ -147,13 +127,6 @@
align-self: center;
}
.structure-info {
position: absolute;
z-index: 3;
color: #0f206c;
border-radius: 100%;
}
/*Additional styles for small format landscape orientation*/
@media (max-height: 450px) and (orientation: landscape) {
.detect-grid {
@@ -189,12 +162,6 @@
display: block;
}
.level-slide-marker {
top: calc(100% - var(--avn-slide-marker-position));
height: auto;
width: 100%;
left: 0%;
}
.image-container {
flex-direction: column;

View File

@@ -18,7 +18,7 @@
<meta name="msapplication-tap-highlight" content="no">
<title>ALVINN</title>
<% if (TARGET === 'web') { %>
<meta name="mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black-translucent">
<link rel="apple-touch-icon" href="icons/apple-touch-icon.png">
<link rel="icon" href="icons/favicon.png">

View File

@@ -2,65 +2,24 @@ import { reactive, computed } from 'vue';
const state = reactive({
disclaimerAgreement: false,
enabledRegions: ['thorax','abdomen','limbs','head'],
regionIconSet: Math.floor(Math.random() * 3) + 1,
version: '0.5.0-alpha',
build: '####',
fullscreen: false,
useExternal: 'optional',
workersEnabled: 'true',
siteDemo: false,
externalServerList: [],
infoUrl: false
enabledRegions: ['thorax','abdomen','limbs'],
version: '0.5.0-rc',
siteConfig: {}
})
const set = (config, confObj) => {
if (confObj === undefined) { return }
state[config] = confObj
const setConfig = (confObj) => {
state.siteConfig = confObj
}
const agree = () => {
state.disclaimerAgreement = true
}
const disableWorkers = () => {
state.workersEnabled = false
}
const getServerList = () => {
if (state.useExternal == 'required') {
return state.externalServerList[0]
} else {
return state.externalServerList
}
}
const toggleFullscreen = () => {
if (document.fullscreenElement) {
document.exitFullscreen().then( () => {
state.fullscreen = false
})
} else {
app.requestFullscreen().then( () => {
state.fullscreen = true
})
}
}
export default () => ({
isAgreed: computed(() => state.disclaimerAgreement),
isFullscreen: computed(() => state.fullscreen),
demoMode: computed(() => state.siteDemo),
externalType: computed(() => state.useExternal),
useWorkers: computed(() => state.workersEnabled),
getRegions: computed(() => state.enabledRegions),
getVersion: computed(() => state.version),
getBuild: computed(() => state.build),
getIconSet: computed(() => state.regionIconSet),
getInfoUrl: computed(() => state.infoUrl),
set,
agree,
disableWorkers,
getServerList,
toggleFullscreen
getConfig: computed(() => state.siteConfig),
setConfig,
agree
})

View File

@@ -1,157 +0,0 @@
class Coordinate {
constructor(x, y) {
this.x = x
this.y = y
}
toRefFrame(...frameArgs) {
if (frameArgs.length == 0) {
return {x: this.x, y: this.y}
}
let outFrames = []
//Get Coordinates in Image Reference Frame
if (frameArgs[0].tagName == 'IMG' && frameArgs[0].width && frameArgs[0].height) {
outFrames.push({
x: this.x * frameArgs[0].width,
y: this.y * frameArgs[0].height
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Image')
}
//Get Coordinates in Canvas Reference Frame
if (frameArgs[1]) {
if (frameArgs[1].tagName == 'CANVAS' && frameArgs[1].width && frameArgs[1].height) {
let imgWidth
let imgHeight
const imgAspect = frameArgs[0].width / frameArgs[0].height
const rendAspect = frameArgs[1].width / frameArgs[1].height
if (imgAspect >= rendAspect) {
imgWidth = frameArgs[1].width
imgHeight = frameArgs[1].width / imgAspect
} else {
imgWidth = frameArgs[1].height * imgAspect
imgHeight = frameArgs[1].height
}
outFrames.push({
x: (frameArgs[1].width - imgWidth) / 2 + this.x * imgWidth,
y: (frameArgs[1].height - imgHeight) / 2 + this.y * imgHeight
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Canvas')
}
}
//Get Coordinates in Screen Reference Frame
if (frameArgs[2]) {
if (frameArgs[2].zoom && frameArgs[2].offset && frameArgs[2].offset.x !== undefined && frameArgs[2].offset.y !== undefined) {
outFrames.push({
x: outFrames[1].x * frameArgs[2].zoom + frameArgs[2].offset.x,
y: outFrames[1].y * frameArgs[2].zoom + frameArgs[2].offset.y
})
} else {
throw new Error('Coordinate: invalid reference frame for frameType: Screen')
}
}
return outFrames
}
toString() {
return `(x: ${this.x}, y: ${this.y})`
}
}
export class StructureBox {
constructor(top, left, bottom, right) {
this.topLeft = new Coordinate(left, top)
this.bottomRight = new Coordinate(right, bottom)
}
getBoxes(boxType, ...frameArgs) {
let lowerH, lowerV, calcSide
switch (boxType) {
case 'point':
lowerH = 'right'
lowerV = 'bottom'
break
case 'side':
lowerH = 'width'
lowerV = 'height'
calcSide = true
break
default:
throw new Error(`StructureBox: invalid boxType - ${boxType}`)
}
if (frameArgs.length == 0) {
return {
left: this.topLeft.x,
top: this.topLeft.y,
[lowerH]: this.bottomRight.x - ((calcSide) ? this.topLeft.x : 0),
[lowerV]: this.bottomRight.y - ((calcSide) ? this.topLeft.y : 0)
}
}
const tL = this.topLeft.toRefFrame(...frameArgs)
const bR = this.bottomRight.toRefFrame(...frameArgs)
let outBoxes = []
tL.forEach((cd, i) => {
outBoxes.push({
left: cd.x,
top: cd.y,
[lowerH]: bR[i].x - ((calcSide) ? cd.x : 0),
[lowerV]: bR[i].y - ((calcSide) ? cd.y : 0)
})
})
return outBoxes
}
}
export class Structure {
constructor(structResult) {
this.label = structResult.label
this.confidence = structResult.confidence
this.box = new StructureBox(
structResult.top,
structResult.left,
structResult.bottom,
structResult.right
)
this.deleted = false
this.index = -1
this.passThreshold = true
this.searched = false
}
get resultIndex() {
return this.index
}
set resultIndex(newIdx) {
this.index = newIdx
}
get isDeleted() {
return this.deleted
}
set isDeleted(del) {
this.deleted = !!del
}
get isSearched() {
return this.searched
}
set isSearched(ser) {
this.searched = !!ser
}
get aboveThreshold() {
return this.passThreshold
}
setThreshold(level) {
if (typeof level != 'number') {
throw new Error(`Structure: invalid threshold level ${level}`)
}
this.passThreshold = this.confidence >= level
}
}

View File

@@ -1,13 +1,11 @@
import { f7 } from 'framework7-vue'
export default {
methods: {
async openCamera(imContain) {
let cameraLoaded = false
var cameraLoaded = false
const devicesList = await navigator.mediaDevices.enumerateDevices()
let videoDeviceAvailable = devicesList.some( d => d.kind == "videoinput")
if (videoDeviceAvailable) {
let vidConstraint = {
this.videoDeviceAvailable = devicesList.some( d => d.kind == "videoinput")
if (this.videoDeviceAvailable) {
var vidConstraint = {
video: {
width: {
ideal: imContain.offsetWidth
@@ -27,66 +25,17 @@ export default {
},
closeCamera () {
this.cameraStream.getTracks().forEach( t => t.stop())
this.cameraStream = null
this.videoAvailable = false
},
captureVidFrame() {
const vidViewer = this.$refs.vid_viewer
vidViewer.pause()
let tempCVS = document.createElement('canvas')
tempCVS.id = 'temp-video-canvas'
tempCVS.height = vidViewer.videoHeight || parseInt(vidViewer.style.height)
tempCVS.width = vidViewer.videoWidth || parseInt(vidViewer.style.width)
const tempCtx = tempCVS.getContext('2d')
tempCtx.drawImage(vidViewer, 0, 0)
this.getImage(tempCVS.toDataURL())
},
async videoFrameDetectWorker (vidData, vidWorker) {
const startDetection = () => {
createImageBitmap(vidData).then(imVideoFrame => {
vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
})
}
vidData.addEventListener('resize',startDetection,{once: true})
vidWorker.onmessage = (eVid) => {
if (eVid.data.error) {
console.log(eVid.data.message)
f7.dialog.alert(`ALVINN AI model error: ${eVid.data.message}`)
} else if (this.videoAvailable) {
createImageBitmap(vidData).then(imVideoFrame => {
vidWorker.postMessage({call: 'videoFrame', image: imVideoFrame}, [imVideoFrame])
})
if (eVid.data.coords) {
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (let coord of eVid.data.coords) {
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / eVid.data.modelWidth) * imgWidth - 10
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / eVid.data.modelHeight) * imgHeight - 10
console.debug(`cx: ${pointX}, cy: ${pointY}`)
imageCtx.globalAlpha = coord[2]
imageCtx.drawImage(target, pointX, pointY, 20, 20)
}
}
}
}
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
const target = this.$refs.target_image
let imgWidth, imgHeight
f7.utils.nextFrame(() => {
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
const imgAspect = vidData.width / vidData.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
})
}
}
}

View File

@@ -56,7 +56,7 @@
},
computed: {
commentText () {
let text = f7.textEditor.get('.comment-editor').getValue()
var text = f7.textEditor.get('.comment-editor').getValue()
if (this.userEmail) {
text += `\\n\\nSubmitted by: ${this.userEmail}`
}
@@ -65,9 +65,9 @@
},
methods: {
sendFeedback () {
let self = this
const issueURL = `https://gitea.azgeorgis.net/api/v1/repos/Georgi_Lab/ALVINN_f7/issues?access_token=9af8ae15b1ee5a98afcb3083bb488e4cf3c683af`
let xhr = new XMLHttpRequest()
var self = this
var issueURL = `https://gitea.azgeorgis.net/api/v1/repos/Georgi_Lab/ALVINN_f7/issues?access_token=9af8ae15b1ee5a98afcb3083bb488e4cf3c683af`
var xhr = new XMLHttpRequest()
xhr.open("POST", issueURL)
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.setRequestHeader('accept', 'application/json')

View File

@@ -1,48 +1,25 @@
<template>
<f7-page name="detect" :id="detectorName + '-detect-page'" @wheel="(e = $event) => e.preventDefault()" @touchmove="(e = $event) => e.preventDefault()">
<f7-page name="detect" :id="detectorName + '-detect-page'">
<!-- Top Navbar -->
<f7-navbar :sliding="false" :back-link="true" back-link-url="/" back-link-force>
<f7-nav-title sliding>{{ regionTitle }}</f7-nav-title>
<f7-nav-title sliding>{{ regions[activeRegion] }}</f7-nav-title>
<f7-nav-right>
<f7-link v-if="!isCordova" :icon-only="true" tooltip="Fullscreen" :icon-f7="isFullscreen ? 'viewfinder_circle_fill' : 'viewfinder'" @click="toggleFullscreen"></f7-link>
<f7-link :icon-only="true" tooltip="ALVINN help" icon-f7="question_circle_fill" href="/help/"></f7-link>
</f7-nav-right>
</f7-navbar>
<f7-block class="detect-grid">
<!--<div style="position: absolute;">{{ debugInfo ? JSON.stringify(debugInfo) : "No Info Available" }}</div>-->
<div class="image-container" ref="image_container">
<SvgIcon v-if="!imageView.src && !videoAvailable" :icon="f7route.params.region" fill-color="var(--avn-theme-color)"/>
<SvgIcon v-if="!imageView && !videoAvailable" :icon="f7route.params.region" fill-color="var(--avn-theme-color)" @click="selectImage" />
<div class="vid-container" :style="`display: ${videoAvailable ? 'block' : 'none'}; position: absolute; width: 100%; height: 100%;`">
<video id="vid-view" ref="vid_viewer" :srcObject="cameraStream" :autoPlay="true" style="width: 100%; height: 100%"></video>
<f7-button @click="captureVidFrame()" style="position: absolute; bottom: 32px; left: 50%; transform: translateX(-50%); z-index: 3;" fill large>Capture</f7-button>
</div>
<canvas
id="im-draw"
ref="image_cvs"
@wheel="spinWheel($event)"
@mousedown.middle="startMove($event)"
@mousemove="makeMove($event)"
@mouseup.middle="endMove($event)"
@touchstart="startTouch($event)"
@touchend="endTouch($event)"
@touchmove="moveTouch($event)"
@click="structureClick"
:style="`display: ${(imageLoaded || videoAvailable) ? 'block' : 'none'}; flex: 1 1 0%; max-width: 100%; max-height: 100%; min-width: 0; min-height: 0; background-size: contain; background-position: center; background-repeat: no-repeat; z-index: 2;`"
></canvas>
<f7-link v-if="getInfoUrl && (selectedChip > -1) && showResults[selectedChip]"
:style="`left: ${infoLinkPos.x}px; top: ${infoLinkPos.y}px; transform: translate(-50%,-50%); background: hsla(${showResults[selectedChip].confidence / 100 * 120}deg, 100%, 50%, .5)`"
class="structure-info"
:icon-only="true"
icon-f7="info"
target="_blank"
:external="true"
:href="infoLinkTarget"
/>
<canvas id="im-draw" ref="image_cvs" @click="structureClick" :style="`display: ${(imageLoaded || videoAvailable) ? 'block' : 'none'}; flex: 1 1 0%; max-width: 100%; max-height: 100%; min-width: 0; min-height: 0; background-size: contain; background-position: center; background-repeat: no-repeat; z-index: 2;`" />
</div>
<div class="chip-results" style="grid-area: result-view; flex: 0 0 auto; align-self: center; max-height: 450px;">
<div class="chip-results" style="grid-area: result-view; flex: 0 0 auto; align-self: center;">
<f7-chip v-for="result in showResults.filter( r => { return r.aboveThreshold && r.isSearched && !r.isDeleted })"
:class="(result.resultIndex == selectedChip) ? 'selected-chip' : ''"
:id="(result.resultIndex == selectedChip) ? 'selected_chip' : ''"
:text="result.label"
media=" "
:tooltip="result.confidence.toFixed(1)"
@@ -55,17 +32,8 @@
<f7-progressbar v-if="(detecting || modelLoading)" style="width: 100%;" :infinite="true" />
</div>
<div v-if="showDetectSettings" class="detect-inputs" style="grid-area: detect-settings;">
<f7-button @click="this.detectorLevel > 0 ? this.detectorLevel = 0 : this.detectorLevel = 50" style="flex: 0 1 20%">
<SvgIcon :icon="this.detectorLevel > 0 ? 'visibility' : 'reset_slide'"/>
</f7-button>
<div style="position: relative; flex: 1 1 100%">
<f7-range class="level-slide-horz" :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range"/>
<f7-range class="level-slide-vert" vertical :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range"/>
<div v-for="result in showResults.filter( r => { return r.isSearched && !r.isDeleted })"
class="level-slide-marker"
:style="`--avn-slide-marker-border: solid hsla(${result.confidence * 1.2}deg, 100%, 50%, .33) 1px; --avn-slide-marker-position: ${result.confidence.toFixed(1)}%`"
></div>
</div>
<f7-range class="level-slide-horz" :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range" style="flex: 1 1 100%"/>
<f7-range class="level-slide-vert" vertical :min="0" :max="100" :step="1" @range:change="onLevelChange" v-model:value="detectorLevel" type="range" style="flex: 1 1 100%"/>
<f7-button @click="() => detectPanel = !detectPanel" :panel-open="!detectPanel && `#${detectorName}-settings`" :panel-close="detectPanel && `#${detectorName}-settings`" style="flex: 0 1 20%">
<SvgIcon icon="check_list"/>
</f7-button>
@@ -74,19 +42,16 @@
</f7-button>
</div>
<f7-segmented class="image-menu" raised>
<f7-button popover-open="#region-popover">
<RegionIcon :region="activeRegion" />
</f7-button>
<f7-button v-if="!videoAvailable" :class="(!modelLoading) ? '' : 'disabled'" popover-open="#capture-popover">
<SvgIcon icon="camera_add"/>
</f7-button>
<f7-button v-if="videoAvailable" @click="closeCamera()">
<SvgIcon icon="no_photography"/>
</f7-button>
<f7-button v-if="!structureZoomed && selectedChip >= 0" style="height: auto; width: auto;" popover-close="#image-popover" @click="zoomToSelected()">
<SvgIcon icon="zoom_to" />
</f7-button>
<f7-button v-else :class="(canvasZoom != 1) ? '' : 'disabled'" style="height: auto; width: auto;" popover-close="#image-popover" @click="resetZoom()">
<SvgIcon icon="reset_zoom" />
</f7-button>
<f7-button @click="toggleSettings()" :class="(imageLoaded) ? '' : 'disabled'">
<f7-button @click="() => showDetectSettings = !showDetectSettings" :class="(imageLoaded) ? '' : 'disabled'">
<SvgIcon icon="visibility"/>
<f7-badge v-if="numResults && (showResults.length != numResults)" color="red" style="position: absolute; right: 15%; top: 15%;">{{ showResults.length - numResults }}</f7-badge>
</f7-button>
@@ -109,6 +74,23 @@
</f7-page>
</f7-panel>
<f7-popover id="region-popover" class="popover-button-menu">
<f7-segmented raised class="segment-button-menu">
<f7-button :class="(getRegions.includes('thorax')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/thorax/" popover-close="#region-popover">
<RegionIcon :region="0" />
</f7-button>
<f7-button :class="(getRegions.includes('abdomen')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/abdomen/" popover-close="#region-popover">
<RegionIcon :region="1" />
</f7-button>
<f7-button :class="(getRegions.includes('limbs')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/limbs/" popover-close="#region-popover">
<RegionIcon :region="2" />
</f7-button>
<f7-button :class="(getRegions.includes('head')) ? '' : ' disabled'" style="height: auto; width: auto;" href="/detect/head/" popover-close="#region-popover">
<RegionIcon :region="3" />
</f7-button>
</f7-segmented>
</f7-popover>
<f7-popover id="capture-popover" class="popover-button-menu">
<f7-segmented raised class="segment-button-menu">
<f7-button style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('camera')">
@@ -117,10 +99,7 @@
<f7-button style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('file')">
<SvgIcon icon="photo_library" />
</f7-button>
<f7-button v-if="secureProtocol" style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('clipboard')">
<SvgIcon icon="clipboard" />
</f7-button>
<f7-button v-if="demoEnabled" style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('sample')">
<f7-button v-if="otherSettings.demo" style="height: auto; width: auto;" popover-close="#capture-popover" @click="selectImage('sample')">
<SvgIcon icon="photo_sample"/>
</f7-button>
</f7-segmented>
@@ -141,27 +120,9 @@
import submitMixin from './submit-mixin'
import detectionMixin from './detection-mixin'
import cameraMixin from './camera-mixin'
import touchMixin from './touch-mixin'
import detectionWorker from '@/assets/detect-worker.js?worker&inline'
import { Structure, StructureBox } from '../js/structures'
const regions = ['Thorax','Abdomen/Pelvis','Limbs','Head and Neck']
let activeRegion = 4
let classesList = []
let imageLoadMode = "environment"
let serverSettings = {}
let otherSettings = {}
let modelLocation = ''
let miniLocation = ''
let reloadModel = false
let detectWorker = null
let vidWorker = null
let canvasMoving = false
let imageLocation = new StructureBox(0, 0, 1, 1)
export default {
mixins: [submitMixin, detectionMixin, cameraMixin, touchMixin],
mixins: [submitMixin, detectionMixin, cameraMixin],
props: {
f7route: Object,
},
@@ -171,28 +132,33 @@
},
data () {
return {
regions: ['Thorax','Abdomen/Pelvis','Limbs','Head and Neck'],
resultData: {},
selectedChip: -1,
activeRegion: 4,
classesList: [],
imageLoaded: false,
imageView: new Image(),
imageView: null,
imageLoadMode: "environment",
detecting: false,
detectPanel: false,
showDetectSettings: false,
detectorName: '',
detectorLevel: 50,
detectorLabels: [],
serverSettings: {},
otherSettings: {},
isCordova: !!window.cordova,
secureProtocol: location.protocol == 'https:',
isFullscreen: false,
uploadUid: null,
uploadDirty: false,
modelLocation: '',
miniLocation: '',
modelLoading: true,
reloadModel: false,
videoDeviceAvailable: false,
videoAvailable: false,
cameraStream: null,
infoLinkPos: {},
canvasOffset: {x: 0, y: 0},
canvasZoom: 1,
structureZoomed: false,
debugInfo: null
cameraStream: null
}
},
setup() {
@@ -200,78 +166,51 @@
},
created () {
let loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) otherSettings = JSON.parse(loadOtherSettings)
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
let modelRoot = this.isCordova ? 'https://localhost' : '.'
this.detectorName = this.f7route.params.region
switch (this.detectorName) {
case 'thorax':
activeRegion = 0
this.activeRegion = 0
break;
case 'abdomen':
activeRegion = 1
this.activeRegion = 1
break;
case 'limbs':
activeRegion = 2
this.activeRegion = 2
break;
case 'head':
activeRegion = 3
this.activeRegion = 3
break;
}
let modelJ = `../models/${this.detectorName}${otherSettings.mini ? '-mini' : ''}/model.json`
let miniJ = `../models/${this.detectorName}-mini/model.json`
modelLocation = new URL(modelJ,import.meta.url).href
miniLocation = new URL(miniJ,import.meta.url).href
let classesJ = `../models/${this.detectorName}/classes.json`
fetch(new URL(classesJ,import.meta.url).href)
this.modelLocation = `${modelRoot}/models/${this.detectorName}${this.otherSettings.mini ? '-mini' : ''}/model.json`
this.miniLocation = `${modelRoot}/models/${this.detectorName}-mini/model.json`
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/${this.detectorName}/classes.json`)
.then((mod) => { return mod.json() })
.then((classes) => {
classesList = classes
this.detectorLabels = classesList.map( l => { return {'name': l, 'detect': true} } )
this.classesList = classes
this.detectorLabels = this.classesList.map( l => { return {'name': l, 'detect': true} } )
})
const loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) serverSettings = JSON.parse(loadServerSettings)
var loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings)
},
mounted () {
if (serverSettings && serverSettings.use) {
if (this.serverSettings && this.serverSettings.use) {
this.getRemoteLabels()
this.modelLoading = false
} else {
this.modelLoading = true
if (!this.useWorkers) {
this.loadModel(modelLocation, true).then(() => {
this.modelLoading = false
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
})
} else {
detectWorker = new detectionWorker()
detectWorker.onmessage = (eMount) => {
self = this
if (eMount.data.error) {
console.log(eMount.data.message)
f7.dialog.alert(`ALVINN AI model error: ${eMount.data.message}`)
}
self.modelLoading = false
}
vidWorker = new detectionWorker()
vidWorker.onmessage = (eMount) => {
self = this
if (eMount.data.error) {
console.log(eMount.data.message)
f7.dialog.alert(`ALVINN AI nano model error: ${eMount.data.message}`)
}
}
detectWorker.postMessage({call: 'loadModel', weights: modelLocation, preload: true})
vidWorker.postMessage({call: 'loadModel', weights: miniLocation, preload: true})
}
this.loadModel(this.modelLocation, true).then(() => {
this.modelLoading = false
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`ALVINN AI model error: ${e.message}`)
this.modelLoading = false
})
}
window.onresize = (e) => { if (this.$refs.image_cvs) this.selectChip('redraw') }
window.onresize = (e) => { this.selectChip('redraw') }
},
computed: {
regionTitle () {
return regions[activeRegion]
},
message () {
if (this.modelLoading) {
return "Preparing ALVINN..."
@@ -284,17 +223,17 @@
}
},
showResults () {
let filteredResults = this.resultData.detections
var filteredResults = this.resultData.detections
if (!filteredResults) return []
const allSelect = this.detectorLabels.every( s => { return s.detect } )
const selectedLabels = this.detectorLabels
var allSelect = this.detectorLabels.every( s => { return s.detect } )
var selectedLabels = this.detectorLabels
.filter( l => { return l.detect })
.map( l => { return l.name })
filteredResults.forEach( (d, i) => {
d.resultIndex = i
d.setThreshold(this.detectorLevel)
d.isSearched = allSelect || selectedLabels.includes(d.label)
filteredResults[i].resultIndex = i
filteredResults[i].aboveThreshold = d.confidence >= this.detectorLevel
filteredResults[i].isSearched = allSelect || selectedLabels.includes(d.label)
})
if (!filteredResults.some( s => s.resultIndex == this.selectedChip && s.aboveThreshold && s.isSearched && !s.isDeleted)) {
@@ -313,15 +252,7 @@
} else {
return false
}
},
demoEnabled () {
return otherSettings.demo || this.demoMode
},
infoLinkTarget () {
if (!this.getInfoUrl) return ''
let structure = this.showResults.find( r => r.resultIndex == this.selectedChip)
return structure ? this.getInfoUrl + structure.label.replaceAll(' ','_') : ''
},
}
},
methods: {
chipGradient (confVal) {
@@ -329,61 +260,14 @@
return `--chip-media-gradient: conic-gradient(from ${270 - (confFactor * 360 / 2)}deg, hsl(${confFactor * 120}deg, 100%, 50%) ${confFactor}turn, hsl(${confFactor * 120}deg, 50%, 66%) ${confFactor}turn)`
},
async setData () {
if (detectWorker) {
detectWorker.onmessage = (eDetect) => {
self = this
if (eDetect.data.error) {
self.detecting = false
self.resultData = {}
loadFailure()
f7.dialog.alert(`ALVINN structure finding error: ${eDetect.data.message}`)
} else if (eDetect.data.success == 'detection') {
self.detecting = false
self.resultData = {detections: []}
eDetect.data.detections.detections.forEach((d) => {
d.label = self.detectorLabels[d.label].name
let detectedStructure = new Structure(d)
self.resultData.detections.push(detectedStructure)
})
self.uploadDirty = true
} else if (eDetect.data.success == 'model') {
reloadModel = false
loadSuccess()
}
f7.utils.nextFrame(() => {
this.selectChip("redraw")
})
}
if (this.reloadModel) {
await this.loadModel(this.modelLocation)
this.reloadModel = false
}
let loadSuccess = null
let loadFailure = null
let modelReloading = null
if (!this.useWorkers && reloadModel) {
await this.loadModel(modelLocation)
reloadModel = false
} else {
modelReloading = new Promise((res, rej) => {
loadSuccess = res
loadFailure = rej
if (reloadModel) {
detectWorker.postMessage({call: 'loadModel', weights: modelLocation})
} else {
loadSuccess()
}
})
}
if (serverSettings && serverSettings.use) {
if (this.serverSettings && this.serverSettings.use) {
this.remoteDetect()
} else if (this.useWorkers) {
Promise.all([modelReloading,createImageBitmap(this.imageView)]).then(res => {
detectWorker.postMessage({call: 'localDetect', image: res[1]}, [res[1]])
})
} else {
createImageBitmap(this.imageView).then(res => {
return this.localDetect(res)
}).then(dets => {
this.localDetect(this.imageView).then(dets => {
this.detecting = false
this.resultData = dets
this.uploadDirty = true
@@ -394,9 +278,6 @@
f7.dialog.alert(`ALVINN structure finding error: ${e.message}`)
})
}
f7.utils.nextFrame(() => {
this.selectChip("redraw")
})
},
selectAll (ev) {
if (ev.target.checked) {
@@ -406,27 +287,24 @@
}
},
async selectImage (mode) {
imageLoadMode = mode
this.imageLoadMode = mode
if (this.isCordova && mode == "camera") {
navigator.camera.getPicture(this.getImage, this.onFail, { quality: 50, destinationType: Camera.DestinationType.DATA_URL, correctOrientation: true });
return
}
if (mode == "camera" && !otherSettings.disableVideo) {
if (mode == "camera") {
this.videoAvailable = await this.openCamera(this.$refs.image_container)
if (this.videoAvailable) {
this.selectedChip = -1
this.imageLoaded = false
this.imageView.src = null
this.imageView = null
this.$refs.image_cvs.style['background-image'] = 'none'
this.resultData = {}
const trackDetails = this.cameraStream.getVideoTracks()[0].getSettings()
let vidElement = this.$refs.vid_viewer
var trackDetails = this.cameraStream.getVideoTracks()[0].getSettings()
var vidElement = this.$refs.vid_viewer
vidElement.width = trackDetails.width
vidElement.height = trackDetails.height
if (!this.useWorkers) {
this.videoFrameDetect(vidElement, miniLocation)
} else {
this.videoFrameDetectWorker(vidElement, vidWorker)
if (!this.otherSettings.disableVideo) {
this.videoFrameDetect(vidElement)
}
return
}
@@ -444,68 +322,33 @@
}).open()
return
}
if (mode == 'clipboard') {
navigator.clipboard.read().then(clip => {
if (!clip[0].types.includes("image/png")) {
throw new Error("Clipboard does not contain valid image data.");
}
return clip[0].getType("image/png");
}).then(blob => {
let clipImage = URL.createObjectURL(blob);
this.getImage(clipImage)
}).catch(e => {
console.log(e)
f7.dialog.alert(`Error pasting image: ${e.message}`)
})
return
}
this.$refs.image_chooser.click()
},
onFail (message) {
alert(`Camera fail: ${message}`)
},
selectChip ( iChip ) {
const [imCanvas, imageCtx] = this.resetView()
if (this.selectedChip == iChip) {
this.selectedChip = -1
this.resetView()
return
}
if (iChip == 'redraw') {
if (this.selectedChip == -1) {
this.resetView()
return
}
if (this.selectedChip == -1) return
iChip = this.selectedChip
}
const [imCanvas, imageCtx] = this.resetView(true)
let structBox, cvsBox, screenBox
[structBox, cvsBox, screenBox] = this.resultData.detections[iChip].box.getBoxes('side', this.imageView, imCanvas, {zoom: this.canvasZoom, offset: {...this.canvasOffset}})
this.infoLinkPos.x = Math.min(Math.max(screenBox.left, 0),imCanvas.width)
this.infoLinkPos.y = Math.min(Math.max(screenBox.top, 0), imCanvas.height)
const boxCoords = this.box2cvs(this.resultData.detections[iChip])[0]
const imageScale = Math.max(this.imageView.width / imCanvas.width, this.imageView.height / imCanvas.height)
imageCtx.drawImage(this.imageView, structBox.left, structBox.top, structBox.width, structBox.height, cvsBox.left, cvsBox.top, cvsBox.width, cvsBox.height)
imageCtx.save()
imageCtx.arc(cvsBox.left, cvsBox.top, 14 / this.canvasZoom, 0, 2 * Math.PI)
imageCtx.closePath()
imageCtx.clip()
imageCtx.drawImage(this.imageView,
structBox.left - (14 / this.canvasZoom * imageScale),
structBox.top - (14 / this.canvasZoom * imageScale),
(28 / this.canvasZoom * imageScale),
(28 / this.canvasZoom * imageScale),
cvsBox.left - (14 / this.canvasZoom),
cvsBox.top - (14 / this.canvasZoom),
(28 / this.canvasZoom), (28 / this.canvasZoom))
imageCtx.restore()
var boxLeft = boxCoords.cvsLeft
var boxTop = boxCoords.cvsTop
var boxWidth = boxCoords.cvsRight - boxCoords.cvsLeft
var boxHeight = boxCoords.cvsBottom - boxCoords.cvsTop
imageCtx.strokeRect(boxLeft,boxTop,boxWidth,boxHeight)
this.selectedChip = iChip
this.resultData.detections[iChip].beenViewed = true
this.$nextTick( () => {
document.getElementById('selected_chip').scrollIntoView({behavior: 'smooth', block: 'nearest'})
})
},
deleteChip ( iChip ) {
f7.dialog.confirm(`${this.resultData.detections[iChip].label} is identified with ${this.resultData.detections[iChip].confidence.toFixed(1)}% confidence. Are you sure you want to delete it?`, () => {
@@ -515,24 +358,14 @@
this.uploadDirty = true
});
},
resetView (drawChip) {
resetView () {
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
imageCtx.translate(this.canvasOffset.x,this.canvasOffset.y)
imageCtx.scale(this.canvasZoom,this.canvasZoom)
imageCtx.globalAlpha = 1
imageCtx.strokeStyle = 'yellow'
imageCtx.lineWidth = 3 / this.canvasZoom
if (this.imageLoaded) {
const imageLoc = imageLocation.getBoxes('side', this.imageView, imCanvas)
if (drawChip) {imageCtx.globalAlpha = .5}
imageCtx.drawImage(this.imageView, 0, 0, this.imageView.width, this.imageView.height, imageLoc[1].left, imageLoc[1].top, imageLoc[1].width, imageLoc[1].height)
if (drawChip) {imageCtx.globalAlpha = 1}
}
this.structureZoomed = false
imageCtx.lineWidth = 3
return [imCanvas, imageCtx]
},
getImage (searchImage) {
@@ -540,22 +373,18 @@
if (this.videoAvailable) {
this.closeCamera()
this.detecting = true
reloadModel = true
this.reloadModel = true
resolve(searchImage)
} else if (this.isCordova && imageLoadMode == "camera") {
} else if (this.isCordova && this.imageLoadMode == "camera") {
this.detecting = true
resolve('data:image/jpg;base64,' + searchImage)
}
if (imageLoadMode == 'clipboard') {
this.detecting = true
resolve(searchImage)
}
const reader = new FileReader()
var reader = new FileReader()
reader.addEventListener("load", () => {
this.detecting = true
resolve(reader.result)
},{once: true})
if (imageLoadMode == 'sample') {
})
if (this.imageLoadMode == 'sample') {
fetch(`${this.isCordova ? 'https://localhost' : '.'}/samples/${this.detectorName}-${searchImage}.jpeg`).then( resp => {
return resp.blob()
}).then(respBlob => {
@@ -574,27 +403,26 @@
this.imageLoaded = true
this.resultData = {}
this.selectedChip = -1
this.imageView = new Image()
this.imageView.src = imgData
return(this.imageView.decode())
}).then( () => {
this.canvasOffset = {x: 0, y: 0}
this.canvasZoom = 1
const imCanvas = this.$refs.image_cvs
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
const imageCtx = imCanvas.getContext("2d")
const imageLoc = imageLocation.getBoxes('side', this.imageView, imCanvas)
imageCtx.drawImage(this.imageView, 0, 0, this.imageView.width, this.imageView.height, imageLoc[1].left, imageLoc[1].top, imageLoc[1].width, imageLoc[1].height)
f7.utils.nextFrame(() => {
const [imCanvas, _] = this.resetView()
imCanvas.style['background-image'] = `url(${this.imageView.src})`
/******
* setTimeout is not a good solution, but it's the only way
* I can find to not cut off drawing of the canvas background
******/
setTimeout(() => {
this.setData()
})
}, 1)
}).catch((e) => {
console.log(e.message)
f7.dialog.alert(`Error loading image: ${e.message}`)
})
},
async submitData () {
let uploadData = this.showResults
var uploadData = this.showResults
.filter( d => { return d.aboveThreshold && d.isSearched && !d.isDeleted })
.map( r => { return {"top": r.top, "left": r.left, "bottom": r.bottom, "right": r.right, "label": r.label}})
this.uploadUid = await this.uploadData(this.imageView.src.split(',')[1],uploadData,this.uploadUid)
@@ -604,85 +432,53 @@
this.detectorLevel = value
},
structureClick(e) {
let self = this
function loopIndex(i) {
if (self.selectedChip == -1) return i
let li = i + self.selectedChip
if (li >= numBoxes) li -= numBoxes
return li
}
let boxCoords = []
this.resultData.detections.forEach(d => {
let cvsBox = d.box.getBoxes('point',this.imageView,this.$refs.image_cvs)[1]
cvsBox.clickable = d.aboveThreshold && d.isSearched && !d.isDeleted
boxCoords.push(cvsBox)
const boxCoords = this.box2cvs(this.showResults)
var findBox = boxCoords.findIndex( (r, i) => { return r.cvsLeft <= e.offsetX &&
r.cvsRight >= e.offsetX &&
r.cvsTop <= e.offsetY &&
r.cvsBottom >= e.offsetY &&
this.resultData.detections[i].resultIndex > this.selectedChip &&
this.resultData.detections[i].aboveThreshold &&
this.resultData.detections[i].isSearched &&
!this.resultData.detections[i].isDeleted
})
const numBoxes = boxCoords.length
let clickX = (e.offsetX - this.canvasOffset.x) / this.canvasZoom
let clickY = (e.offsetY - this.canvasOffset.y) / this.canvasZoom
let boxEnd = boxCoords.splice(0, this.selectedChip)
boxCoords = boxCoords.concat(boxEnd)
const findBox = boxCoords.findIndex( (r, i) => {
let di = loopIndex(i)
if (di == this.selectedChip ) return false
return r.clickable &&
r.left <= clickX &&
r.right >= clickX &&
r.top <= clickY &&
r.bottom >= clickY
})
this.selectChip(findBox >= 0 ? this.resultData.detections[loopIndex(findBox)].resultIndex : this.selectedChip)
this.selectChip(findBox >= 0 ? this.resultData.detections[findBox].resultIndex : this.selectedChip)
},
toggleSettings() {
this.showDetectSettings = !this.showDetectSettings
f7.utils.nextFrame(() => {
this.selectChip("redraw")
})
},
startMove() {
canvasMoving = true
},
endMove() {
canvasMoving = false
},
makeMove(event) {
if (canvasMoving) {
this.canvasOffset.x += event.movementX
this.canvasOffset.y += event.movementY
this.selectChip("redraw")
box2cvs(boxInput) {
if (!boxInput || boxInput.length == 0) return []
const boxList = boxInput.length ? boxInput : [boxInput]
const [imCanvas, imageCtx] = this.resetView()
var imgWidth
var imgHeight
const imgAspect = this.imageView.width / this.imageView.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
imgWidth = imCanvas.width
imgHeight = imCanvas.width / imgAspect
} else {
imgWidth = imCanvas.height * imgAspect
imgHeight = imCanvas.height
}
const cvsCoords = boxList.map( (d, i) => {
return {
"cvsLeft": (imCanvas.width - imgWidth) / 2 + d.left * imgWidth,
"cvsRight": (imCanvas.width - imgWidth) / 2 + d.right * imgWidth,
"cvsTop": (imCanvas.height - imgHeight) / 2 + d.top * imgHeight,
"cvsBottom": (imCanvas.height - imgHeight) / 2 + d.bottom * imgHeight
}
})
return cvsCoords
},
spinWheel(event) {
let zoomFactor
if (event.wheelDelta > 0) {
zoomFactor = 1.05
} else if (event.wheelDelta < 0) {
zoomFactor = 1 / 1.05
toggleFullscreen() {
if (document.fullscreenElement) {
document.exitFullscreen().then( () => {
this.isFullscreen = false
})
} else {
app.requestFullscreen().then( () => {
this.isFullscreen = true
})
}
this.canvasZoom *= zoomFactor
this.canvasOffset.x = event.offsetX * (1 - zoomFactor) + this.canvasOffset.x * zoomFactor
this.canvasOffset.y = event.offsetY * (1 - zoomFactor) + this.canvasOffset.y * zoomFactor
this.selectChip("redraw")
},
resetZoom() {
this.canvasZoom = 1
this.canvasOffset.x = 0
this.canvasOffset.y = 0
this.selectChip("redraw")
},
zoomToSelected() {
const imCanvas = this.$refs.image_cvs
const boxCoords = this.resultData.detections[this.selectedChip].box.getBoxes('point', this.imageView, imCanvas)
const boxWidth = boxCoords[1].right - boxCoords[1].left
const boxHeight = boxCoords[1].bottom - boxCoords[1].top
const boxMidX = (boxCoords[1].right + boxCoords[1].left ) / 2
const boxMidY = (boxCoords[1].bottom + boxCoords[1].top ) / 2
const zoomFactor = Math.min(imCanvas.width / boxWidth * .9, imCanvas.height / boxHeight * .9, 8)
this.canvasZoom = zoomFactor
this.canvasOffset.x = -(boxMidX * zoomFactor) + imCanvas.width / 2
this.canvasOffset.y = -(boxMidY * zoomFactor) + imCanvas.height / 2
this.selectChip("redraw")
this.structureZoomed = true
}
}
}

View File

@@ -1,7 +1,7 @@
import * as tf from '@tensorflow/tfjs'
import { f7 } from 'framework7-vue'
let model = null
var model = null
export default {
methods: {
@@ -9,7 +9,7 @@ export default {
if (model && model.modelURL == weights) {
return model
} else if (model) {
tf.dispose(model)
model.dispose()
}
model = await tf.loadGraphModel(weights)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
@@ -25,32 +25,28 @@ export default {
return model
},
async localDetect(imageData) {
console.time('mx: pre-process')
console.time('pre-process')
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
let gTense = null
const input = tf.tidy(() => {
gTense = tf.image.rgbToGrayscale(tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight])).div(255.0).expandDims(0)
return tf.concat([gTense,gTense,gTense],3)
return tf.image.resizeBilinear(tf.browser.fromPixels(imageData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
})
tf.dispose(gTense)
console.timeEnd('mx: pre-process')
console.timeEnd('pre-process')
console.time('mx: run prediction')
console.time('run prediction')
const res = model.predict(input)
const tRes = tf.transpose(res,[0,2,1])
const rawRes = tRes.arraySync()[0]
console.timeEnd('mx: run prediction')
const rawRes = tf.transpose(res,[0,2,1]).arraySync()[0]
console.timeEnd('run prediction')
console.time('mx: post-process')
console.time('post-process')
const outputSize = res.shape[1]
let rawBoxes = []
let rawScores = []
for (let i = 0; i < rawRes.length; i++) {
const getScores = rawRes[i].slice(4)
for (var i = 0; i < rawRes.length; i++) {
var getScores = rawRes[i].slice(4)
if (getScores.every( s => s < .05)) { continue }
const getBox = rawRes[i].slice(0,4)
const boxCalc = [
var getBox = rawRes[i].slice(0,4)
var boxCalc = [
(getBox[0] - (getBox[2] / 2)) / modelWidth,
(getBox[1] - (getBox[3] / 2)) / modelHeight,
(getBox[0] + (getBox[2] / 2)) / modelWidth,
@@ -63,36 +59,31 @@ export default {
if (rawBoxes.length > 0) {
const tBoxes = tf.tensor2d(rawBoxes)
let tScores = null
let resBoxes = null
let validBoxes = []
let structureScores = null
let boxes_data = []
let scores_data = []
let classes_data = []
for (let c = 0; c < outputSize - 4; c++) {
for (var c = 0; c < outputSize - 4; c++) {
structureScores = rawScores.map(x => x[c])
tScores = tf.tensor1d(structureScores)
resBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = resBoxes.dataSync()
tf.dispose(resBoxes)
var validBoxes = await tf.image.nonMaxSuppressionAsync(tBoxes,tScores,10,0.5,.05)
validBoxes = validBoxes.dataSync()
if (validBoxes) {
boxes_data.push(...rawBoxes.filter( (_, idx) => validBoxes.includes(idx)))
let outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
var outputScores = structureScores.filter( (_, idx) => validBoxes.includes(idx))
scores_data.push(...outputScores)
classes_data.push(...outputScores.fill(c))
}
}
validBoxes = []
tf.dispose(tBoxes)
tf.dispose(tScores)
tf.dispose(tRes)
const valid_detections_data = classes_data.length
const output = {
var output = {
detections: []
}
for (let i =0; i < valid_detections_data; i++) {
const [dLeft, dTop, dRight, dBottom] = boxes_data[i]
for (var i =0; i < valid_detections_data; i++) {
var [dLeft, dTop, dRight, dBottom] = boxes_data[i]
output.detections.push({
"top": dTop,
"left": dLeft,
@@ -105,14 +96,14 @@ export default {
}
tf.dispose(res)
tf.dispose(input)
console.timeEnd('mx: post-process')
console.timeEnd('post-process')
return output || { detections: [] }
},
getRemoteLabels() {
let self = this
const modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
let xhr = new XMLHttpRequest()
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detectors`
var xhr = new XMLHttpRequest()
xhr.open("GET", modelURL)
xhr.setRequestHeader('Content-Type', 'application/json')
xhr.timeout = 10000
@@ -124,8 +115,8 @@ export default {
f7.dialog.alert(`ALVINN has encountered an error: ${errorResponse.error}`)
return
}
const detectors = JSON.parse(xhr.response).detectors
let findLabel = detectors
var detectors = JSON.parse(xhr.response).detectors
var findLabel = detectors
.find( d => { return d.name == self.detectorName } )?.labels
.filter( l => { return l != "" } ).sort()
.map( l => { return {'name': l, 'detect': true} } )
@@ -139,9 +130,9 @@ export default {
xhr.send()
},
remoteDetect() {
let self = this
const modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect`
let xhr = new XMLHttpRequest()
var self = this
var modelURL = `http://${this.serverSettings.address}:${this.serverSettings.port}/detect`
var xhr = new XMLHttpRequest()
xhr.open("POST", modelURL)
xhr.timeout = 10000
xhr.ontimeout = this.remoteTimeout
@@ -158,7 +149,7 @@ export default {
self.uploadDirty = true
}
const doodsData = {
var doodsData = {
"detector_name": this.detectorName,
"detect": {
"*": 1
@@ -172,8 +163,8 @@ export default {
this.detecting = false
f7.dialog.alert('No connection to remote ALVINN instance. Please check app settings.')
},
async videoFrameDetect (vidData, miniModel) {
await this.loadModel(miniModel)
async videoFrameDetect (vidData) {
await this.loadModel(this.miniLocation)
const [modelWidth, modelHeight] = model.inputs[0].shape.slice(1, 3)
const imCanvas = this.$refs.image_cvs
const imageCtx = imCanvas.getContext("2d")
@@ -182,7 +173,8 @@ export default {
imCanvas.width = imCanvas.clientWidth
imCanvas.height = imCanvas.clientHeight
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
let imgWidth, imgHeight
var imgWidth
var imgHeight
const imgAspect = vidData.width / vidData.height
const rendAspect = imCanvas.width / imCanvas.height
if (imgAspect >= rendAspect) {
@@ -193,7 +185,7 @@ export default {
imgHeight = imCanvas.height
}
while (this.videoAvailable) {
console.time('mx: frame-process')
console.time('frame-process')
try {
const input = tf.tidy(() => {
return tf.image.resizeBilinear(tf.browser.fromPixels(vidData), [modelWidth, modelHeight]).div(255.0).expandDims(0)
@@ -203,31 +195,25 @@ export default {
let rawCoords = []
if (rawRes) {
for (let i = 0; i < rawRes.length; i++) {
let getScores = rawRes[i].slice(4)
for (var i = 0; i < rawRes.length; i++) {
var getScores = rawRes[i].slice(4)
if (getScores.some( s => s > .5)) {
let foundTarget = rawRes[i].slice(0,2)
foundTarget.push(Math.max(...getScores))
rawCoords.push(foundTarget)
rawCoords.push(rawRes[i].slice(0,2))
}
}
imageCtx.clearRect(0,0,imCanvas.width,imCanvas.height)
for (let coord of rawCoords) {
for (var coord of rawCoords) {
console.log(`x: ${coord[0]}, y: ${coord[1]}`)
let pointX = (imCanvas.width - imgWidth) / 2 + (coord[0] / modelWidth) * imgWidth -5
let pointY = (imCanvas.height - imgHeight) / 2 + (coord[1] / modelHeight) * imgHeight -5
imageCtx.globalAlpha = coord[2]
imageCtx.drawImage(target, pointX, pointY, 20, 20)
}
}
tf.dispose(input)
tf.dispose(res)
tf.dispose(rawRes)
} catch (e) {
console.log(e)
}
console.timeEnd('mx: frame-process')
console.timeEnd('frame-process')
await tf.nextFrame();
}
}

View File

@@ -4,14 +4,7 @@
<f7-block>
<h2>Quick Start</h2>
<ol>
<li>Select the region of the body you want to identify structures from. The regions are:
<ul>
<li><RegionIcon :region="0" class="list-region"/>Thorax and back</li>
<li><RegionIcon :region="1" class="list-region"/>Abdomen and pelvis</li>
<li><RegionIcon :region="2" class="list-region"/>Limbs</li>
<li><RegionIcon :region="3" class="list-region"/>Head and neck</li>
</ul>
</li>
<li>Select the region of the body you want to identify structures from.</li>
<li>Load an image:
<ul>
<li>Click on the camera icon <SvgIcon icon="photo_camera" class="list-svg"/> to take a new picture.
@@ -21,40 +14,33 @@
</ul>
</li>
<li>Click on the image file icon <SvgIcon icon="photo_library" class="list-svg"/> to load a picture from the device storage.</li>
<li>If the clipboard is available on the system, then there will be a paste icon <SvgIcon icon="clipboard" class="list-svg"/> to paste image data directly into the app.</li>
<li>If demo mode is turned on, you can click on the marked image icon <SvgIcon icon="photo_sample" class="list-svg"/> to load an ALVINN sample image.</li>
</ul>
</li>
<li>When the picture is captured or loaded, any identifiable structures will be listed as tags below the image:
<f7-chip text="Structure name" media=" " class="demo-chip" deleteable/>
<f7-chip text="Structure name" media=" " class="demo-chip"/>
<ul>
<li>Click on each tag to see the structure highlighted in the image or click on the image to see the tag for that structure (additional clicks to the same area will select overlapping structres).</li>
<li>Click on each tag to see the structure highlighted in the image.</li>
<li>Tag color and proportion filled indicate ALVINN's level of confidence in the identification.</li>
<li>An incorrect tag can be deleted by clicking on the tag's <f7-icon icon="chip-delete" style="margin-right: 1px;"></f7-icon> button.</li>
<li>Click on the zoom to structure button <SvgIcon icon="zoom_to" class="list-svg"/> to magnify the view of the selected structure</li>
<li>If there are potential structures that do not satisfy the current detection threshold, a badge on the detection menu icon <SvgIcon icon="visibility" class="list-svg"/> will indicate the number of un-displayed structures.</li>
</ul>
</li>
<li>Pan (middle click or touch and drag) and zoom (mouse wheel or pinch) to manually select detailed views in the image.</li>
<li>The reset zoom button <SvgIcon icon="reset_zoom" class="list-svg"/> will return the image to its initial position and magnification.</li>
</ol>
<h2>Advanced Features</h2>
<h3>Detection Parameters</h3>
<p>
If there are potential structures that do not satisfy the current detection settings, a badge on the detection menu icon <SvgIcon icon="visibility" class="list-svg"/> will indicate the number of un-displayed structures.
Clicking on the detection menu icon will open a menu of tools to adjust the detection settings.
After an image has been loaded and structure detection has been performed, the detection parameters can be adjusted using the detection menu icon <SvgIcon icon="visibility" class="list-svg"/>.
This button will make three tools available:
</p>
<ol>
<li>Confidence filter <SvgIcon icon="visibility" class="list-svg"/> or <SvgIcon icon="reset_slide" class="list-svg"/>: You can press this button to show all structures or return the confidence slider to the default value (50%).</li>
<li>Confidence slider: You can use the slider to change the confidence threshold for identifying structures.</li>
<li>Refresh detections <SvgIcon icon="refresh_search" class="list-svg"/>: If there has been a permanent change to the structure detection list, such as deleting a tag, the detection list can be reset to its original state.</li>
<li>Confidence slider: You can use the slider to change the confidence threshold for identifying structures. The default threshold is 50% confidence.</li>
<li>Refresh detections <SvgIcon icon="refresh_search" class="list-svg"/>: If there has been a permanent change to the structures detections, such as deleting a tag, the detection list can be reset to its original state.</li>
<li>Structure list <SvgIcon icon="check_list" class="list-svg"/>: you can view a list of all the structures available for detection in that region and select/deselect individual structures for detection.</li>
</ol>
<h3>Submitting Images</h3>
<p>
If all of the detection tags that are currently visible have been clicked on and viewed, then the cloud upload button <SvgIcon icon="cloud_upload" class="list-svg"/> on the detection menu will be enabled.
This button will cause the image and the verified structures to be uploaded to the ALVINN project servers where that data will become available for further training of the neural net.
If after the image has been uploaded, the available detection tags are changed via deletion or the detection settings options, then the option to re-upload the image will be available if all the new tags have been viewed and verified.
If all of the detection tags that are currently visible have been viewed, then the cloud upload button <SvgIcon icon="cloud_upload" class="list-svg"/> on the detection menu will be enabled.
This button will cause the image and the verified structures to be uploaded to the ALVINN project servers where that data will be available for further training of the neural net. If after the image has been uploaded, the available detection tags change, then the option to re-upload the image will be available if all the new tags have been viewed and verified.
</p>
</f7-block>
</f7-page>
@@ -71,13 +57,6 @@
top: .5em;
}
.list-region {
width: 3em;
position:relative;
top: 1em;
margin-right: .5em;
}
.cap-button {
background-color: var(--f7-theme-color);
color: white;
@@ -101,12 +80,10 @@
<script>
import SvgIcon from '../components/svg-icon.vue'
import RegionIcon from '../components/region-icon.vue'
export default {
components: {
SvgIcon,
RegionIcon
SvgIcon
}
}
</script>

View File

@@ -6,10 +6,6 @@
<f7-link icon-ios="f7:bars" icon-md="f7:bars" panel-open="left"></f7-link>
</f7-nav-left>
<f7-nav-title sliding>A.L.V.I.N.N.</f7-nav-title>
<f7-nav-right>
<f7-link v-if="!isCordova" :icon-only="true" tooltip="Fullscreen" :icon-f7="isFullscreen ? 'viewfinder_circle_fill' : 'viewfinder'" @click="toggleFullscreen"></f7-link>
<f7-link :icon-only="true" tooltip="ALVINN help" icon-f7="question_circle_fill" href="/help/"></f7-link>
</f7-nav-right>
</f7-navbar>
<!-- Page content-->
<div style="display: grid; grid-template-columns: 100%; grid-template-rows: min-content min-content min-content 1fr; align-content: stretch; gap: 15px; min-height: 0px; max-height: calc(100vh - (var(--f7-navbar-height) + var(--f7-safe-area-top))); height: calc(100vh - (var(--f7-navbar-height) + var(--f7-safe-area-top)));">
@@ -24,16 +20,16 @@
<p style="text-align: center; margin: 0;">Select a region to begin.</p>
<div class="region-grid">
<f7-button :class="`region-button thorax${isAgreed && getRegions.includes('thorax') ? '' : ' disabled'}`" :href="isAgreed && getRegions.includes('thorax') && '/detect/thorax/'">
<RegionIcon class="region-image" :region="0" :iconSet="getIconSet" />
<RegionIcon class="region-image" :region="0" />
</f7-button>
<f7-button :class="`region-button abdomen${isAgreed && getRegions.includes('abdomen') ? '' : ' disabled'}`" :href="isAgreed && getRegions.includes('abdomen') && '/detect/abdomen/'">
<RegionIcon class="region-image" :region="1" :iconSet="getIconSet" />
<RegionIcon class="region-image" :region="1" />
</f7-button>
<f7-button :class="`region-button limbs${isAgreed && getRegions.includes('limbs') ? '' : ' disabled'}`" :href="isAgreed && getRegions.includes('limbs') && '/detect/limbs/'">
<RegionIcon class="region-image" :region="2" :iconSet="getIconSet" />
<RegionIcon class="region-image" :region="2" />
</f7-button>
<f7-button :class="`region-button headneck${isAgreed && getRegions.includes('head') ? '' : ' disabled'}`" :href="isAgreed && getRegions.includes('head') && '/detect/head/'">
<RegionIcon class="region-image" :region="3" :iconSet="getIconSet" />
<RegionIcon class="region-image" :region="3" />
</f7-button>
</div>
</div>
@@ -107,16 +103,10 @@
},
data () {
return {
isCordova: !!window.cordova,
alphaCheck: false
}
},
setup() {
//URL TESTING CODE
//let testUrl = URL.parse(`../models/thorax/model.json`,import.meta.url).href
//console.log(testUrl)
//let testUrl2 = new URL(`../models/thorax/model.json`,import.meta.url)
//console.log(testUrl2)
return store()
},
methods: {

View File

@@ -31,22 +31,19 @@
<span style="margin-left: 16px;">Disable video estimates<f7-icon size="16" style="padding-left: 5px;" f7="question_diamond_fill" tooltip="faster: recommended for slower devices" /></span>
<f7-toggle v-model:checked="otherSettings.disableVideo" style="margin-right: 16px;" />
</div>
<div v-if="serverToggle">
<div style="display:flex; justify-content:space-between; width: 100%">
<span style="margin-left: 16px;">Use external server</span>
<f7-toggle v-model:checked="serverSettings.use" style="margin-right: 16px;" @change="setDirty()" />
</div>
<f7-list >
<f7-list-input :disabled="!serverSettings.use || serverList" v-model:value="serverSettings.address" label="Server address" type="text" placeholder="127.0.0.1" />
<f7-list-input :disabled="!serverSettings.use || serverList" v-model:value="serverSettings.port" label="Server port" type="text" placeholder="9001" />
</f7-list>
<span>Other servers</span>
<f7-list :dividers="true" :outline="true" :strong="true" :inset="true" style="width: calc(100% - 32px); margin-top: 0;">
<f7-list-item v-for="(addObj) in externalIp" :disabled="!serverSettings.use" :title="addObj.name" @click="setServerProps(addObj.address, addObj.port)"></f7-list-item>
<f7-list-item v-if="!serverList" v-for="(port, add) in otherIp" :disabled="!serverSettings.use" :title="add" @click="setServerProps(add, port)">{{ port }}</f7-list-item>
<f7-list-item v-if="Object.keys(otherIp).length == 0 && externalIp.length == 0" title="No previous server settings"></f7-list-item>
</f7-list>
<div style="display:flex; justify-content:space-between; width: 100%">
<span style="margin-left: 16px;">Use external server</span>
<f7-toggle v-model:checked="serverSettings.use" style="margin-right: 16px;" @change="setDirty()" />
</div>
<f7-list>
<f7-list-input :disabled="!serverSettings.use" v-model:value="serverSettings.address" label="Server address" type="text" placeholder="127.0.0.1" />
<f7-list-input :disabled="!serverSettings.use" v-model:value="serverSettings.port" label="Server port" type="text" placeholder="9001" />
</f7-list>
<span>Other servers</span>
<f7-list :dividers="true" :outline="true" :strong="true" :inset="true" style="width: calc(100% - 32px); margin-top: 0;">
<f7-list-item v-for="(port, add) in otherIp" :disabled="!serverSettings.use" :title="add" @click="setServerProps(add, port)">{{ port }}</f7-list-item>
<f7-list-item v-if="Object.keys(otherIp).length == 0" title="No previous server settings"></f7-list-item>
</f7-list>
</div>
<f7-button fill @click="saveAllSettings">SAVE</f7-button>
</div>
@@ -64,7 +61,6 @@
<script>
import { f7 } from 'framework7-vue'
import store from '../js/store'
export default {
data () {
@@ -76,8 +72,8 @@
},
serverSettings: {
use: false,
address: '127.0.0.1',
port: '9000',
address: '10.170.64.22',
port: '9001',
previous: {}
},
themeSettings: {
@@ -85,36 +81,24 @@
}
}
},
setup() {
return store()
},
computed: {
otherIp () {
let filteredIps = {}
for (let oldIp in this.serverSettings.previous) {
for (var oldIp in this.serverSettings.previous) {
if (oldIp != this.serverSettings.address) {
filteredIps[oldIp] = this.serverSettings.previous[oldIp]
}
}
return filteredIps
},
serverToggle () {
return ['optional','list'].includes(this.externalType)
},
serverList () {
return this.externalType == 'list'
},
externalIp () {
return this.getServerList()
}
},
created () {
const loadServerSettings = localStorage.getItem('serverSettings')
var loadServerSettings = localStorage.getItem('serverSettings')
if (loadServerSettings) this.serverSettings = JSON.parse(loadServerSettings)
if (!this.serverSettings.previous) this.serverSettings.previous = {}
const loadThemeSettings = localStorage.getItem('themeSettings')
var loadThemeSettings = localStorage.getItem('themeSettings')
if (loadThemeSettings) this.themeSettings = JSON.parse(loadThemeSettings)
const loadOtherSettings = localStorage.getItem('otherSettings')
var loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
},
methods: {
@@ -122,7 +106,7 @@
let saveSetting = new Promise(
(saved,failed) => {
try {
if (this.serverSettings.use && !this.externalIp.some( (srv) => srv.address == this.serverSettings.address)) {
if (this.serverSettings.use) {
this.serverSettings.previous[this.serverSettings.address] = this.serverSettings.port
}
localStorage.setItem('serverSettings',JSON.stringify(this.serverSettings))
@@ -136,7 +120,7 @@
)
saveSetting.then(
() => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'Settings saved',
closeTimeout: 2000
})
@@ -144,7 +128,7 @@
this.isDirty = false;
},
() => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'ERROR: No settings saved',
closeTimeout: 2000
})
@@ -167,8 +151,7 @@
},
toggleSettingsView () {
this.showAdvanced = !this.showAdvanced
//this.$refs.advancedSettings.style.maxHeight = `${this.showAdvanced ? this.$refs.advancedSettings.scrollHeight : 0}px`
this.$refs.advancedSettings.style.maxHeight = this.showAdvanced ? '100%' : '0px'
this.$refs.advancedSettings.style.maxHeight = `${this.showAdvanced ? this.$refs.advancedSettings.scrollHeight : 0}px`
},
confirmBack () {
if (this.isDirty) {

View File

@@ -8,8 +8,6 @@
<f7-block-title medium>Details</f7-block-title>
<f7-list>
<f7-list-item title="Version" :after="alvinnVersion"></f7-list-item>
<f7-list-item title="Build" :after="alvinnBuild"></f7-list-item>
<f7-list-item title="Workers" :after="useWorkers ? 'Enabled' : 'Disabled'"></f7-list-item>
</f7-list>
<f7-block-title medium>Models</f7-block-title>
<f7-list style="width: 100%;">
@@ -17,10 +15,8 @@
<f7-list-item title="Thorax-m" :after="miniThoraxDetails.version"></f7-list-item>
<f7-list-item :class="otherSettings.mini ? 'unused-model' : ''" title="Abdomen/Pelvis" :after="abdomenDetails.version"></f7-list-item>
<f7-list-item title="Abd/Pel-m" :after="miniAbdomenDetails.version"></f7-list-item>
<f7-list-item :class="otherSettings.mini ? 'unused-model' : ''" title="Limbs" :after="limbsDetails.version"></f7-list-item>
<f7-list-item title="Limbs-m" :after="miniLimbsDetails.version"></f7-list-item>
<f7-list-item :class="otherSettings.mini ? 'unused-model' : ''" title="Head/Neck" :after="headneckDetails.version"></f7-list-item>
<f7-list-item title="Head-m" :after="miniHeadneckDetails.version"></f7-list-item>
<f7-list-item title="Limbs" :after="limbsDetails.version"></f7-list-item>
<f7-list-item title="Head/Neck" :after="headneckDetails.version"></f7-list-item>
</f7-list>
</div>
</f7-block>
@@ -46,16 +42,10 @@
miniThoraxDetails: {},
abdomenDetails: {},
miniAbdomenDetails: {},
//limbsDetails: { "version": "N/A" },
//headneckDetails: { "version": "N/A" },
limbsDetails: {},
miniLimbsDetails: {},
headneckDetails: {},
miniHeadneckDetails: {},
limbsDetails: { "version": "N/A" },
headneckDetails: { "version": "N/A" },
alvinnVersion: store().getVersion,
alvinnBuild: store().getBuild,
isCordova: !!window.cordova,
useWorkers: store().useWorkers,
otherSettings: {}
}
},
@@ -63,7 +53,7 @@
return store()
},
created () {
const loadOtherSettings = localStorage.getItem('otherSettings')
var loadOtherSettings = localStorage.getItem('otherSettings')
if (loadOtherSettings) this.otherSettings = JSON.parse(loadOtherSettings)
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/thorax/descript.json`)
.then((mod) => { return mod.json() })
@@ -77,18 +67,6 @@
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/abdomen-mini/descript.json`)
.then((mod) => { return mod.json() })
.then((desc) => { this.miniAbdomenDetails = desc })
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/limbs/descript.json`)
.then((mod) => { return mod.json() })
.then((desc) => { this.limbsDetails = desc })
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/limbs-mini/descript.json`)
.then((mod) => { return mod.json() })
.then((desc) => { this.miniLimbsDetails = desc })
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/head/descript.json`)
.then((mod) => { return mod.json() })
.then((desc) => { this.headneckDetails = desc })
fetch(`${this.isCordova ? 'https://localhost' : '.'}/models/head-mini/descript.json`)
.then((mod) => { return mod.json() })
.then((desc) => { this.miniHeadneckDetails = desc })
},
methods: {
}

View File

@@ -5,8 +5,8 @@ export default {
newUid (length) {
const uidLength = length || 16
const uidChars = 'abcdefghijklmnopqrstuvwxyz0123456789'
let uid = []
for (let i = 0; i < uidLength; i++) {
var uid = []
for (var i = 0; i < uidLength; i++) {
uid.push(uidChars.charAt(Math.floor(Math.random() * ((i < 4) ? 26 : 36))))
}
return uid.join('')
@@ -14,23 +14,24 @@ export default {
uploadData (imagePayload, classPayload, prevUid) {
let uploadImage = new Promise (resolve => {
const dataUid = prevUid || this.newUid(16)
let byteChars = window.atob(imagePayload)
let byteArrays = []
var byteChars = window.atob(imagePayload)
var byteArrays = []
var len = byteChars.length
for (let offset = 0; offset < byteChars.length; offset += 1024) {
let slice = byteChars.slice(offset, offset + 1024)
let byteNumbers = new Array(slice.length)
for (let i = 0; i < slice.length; i++) {
for (var offset = 0; offset < len; offset += 1024) {
var slice = byteChars.slice(offset, offset + 1024)
var byteNumbers = new Array(slice.length)
for (var i = 0; i < slice.length; i++) {
byteNumbers[i] = slice.charCodeAt(i)
}
let byteArray = new Uint8Array(byteNumbers)
var byteArray = new Uint8Array(byteNumbers)
byteArrays.push(byteArray)
}
const imageBlob = new Blob(byteArrays, {type: 'image/jpeg'})
var imageBlob = new Blob(byteArrays, {type: 'image/jpeg'})
let xhrJpg = new XMLHttpRequest()
let uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.jpeg`
var xhrJpg = new XMLHttpRequest()
var uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.jpeg`
xhrJpg.open("PUT", uploadUrl)
xhrJpg.setRequestHeader('Content-Type', 'image/jpeg')
xhrJpg.setRequestHeader('X-Method-Override', 'PUT')
@@ -38,8 +39,8 @@ export default {
xhrJpg.setRequestHeader("Authorization", "Basic " + btoa("LKBm3H6JdSaywyg:"))
xhrJpg.send(imageBlob)
let xhrTxt = new XMLHttpRequest()
uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.txt`
var xhrTxt = new XMLHttpRequest()
var uploadUrl = `https://nextcloud.azgeorgis.net/public.php/webdav/${dataUid}.txt`
xhrTxt.open("PUT", uploadUrl)
xhrTxt.setRequestHeader('Content-Type', 'text/plain')
xhrTxt.setRequestHeader('X-Method-Override', 'PUT')
@@ -50,7 +51,7 @@ export default {
resolve(dataUid)
})
return uploadImage.then((newUid) => {
const toast = f7.toast.create({
var toast = f7.toast.create({
text: 'Detections Uploaded: thank you.',
closeTimeout: 2000
})

View File

@@ -1,51 +0,0 @@
export default {
data () {
return {
touchPrevious: {}
}
},
methods: {
startTouch(event) {
if (event.touches.length == 1) {
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
}
if (event.touches.length == 2) {
let midX = (event.touches.item(0).clientX + event.touches.item(1).clientX) / 2
let midY = (event.touches.item(0).clientY + event.touches.item(1).clientY) / 2
this.touchPrevious = {distance: this.touchDistance(event.touches), x: midX, y: midY}
}
},
endTouch(event) {
if (event.touches.length == 1) {
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
} else {
//this.debugInfo = null
}
},
moveTouch(event) {
switch (event.touches.length) {
case 1:
this.canvasOffset.x += event.touches[0].clientX - this.touchPrevious.x
this.canvasOffset.y += event.touches[0].clientY - this.touchPrevious.y
this.touchPrevious = {x: event.touches[0].clientX, y: event.touches[0].clientY}
break;
case 2:
let newDistance = this.touchDistance(event.touches)
let midX = (event.touches.item(0).clientX + event.touches.item(1).clientX) / 2
let midY = (event.touches.item(0).clientY + event.touches.item(1).clientY) / 2
let zoomFactor = newDistance / this.touchPrevious.distance
this.canvasZoom *= zoomFactor
this.canvasOffset.x = (midX - 16) * (1 - zoomFactor) + this.canvasOffset.x * zoomFactor + (midX - this.touchPrevious.x)
this.canvasOffset.y = (midY - 96) * (1 - zoomFactor) + this.canvasOffset.y * zoomFactor + (midY - this.touchPrevious.y)
this.touchPrevious = {distance: newDistance, x: midX, y: midY}
break;
}
this.selectChip("redraw")
},
touchDistance(touches) {
let touch1 = touches.item(0)
let touch2 = touches.item(1)
return Math.sqrt((touch1.clientX - touch2.clientX) ** 2 + (touch1.clientY - touch2.clientY) ** 2)
}
}
}